On the spherical convexity of quadratic functions

被引:10
作者
Ferreira, O. P. [1 ]
Nemeth, S. Z. [2 ]
机构
[1] Univ Fed Goias, IME, Ave Esperanca S-N,Campus Samambaia, BR-74690900 Goiania, Go, Brazil
[2] Univ Birmingham, Sch Math, Watson Bldg, Birmingham B15 2TT, W Midlands, England
关键词
Spheric convexity; Quadratic functions; Positive orthant; Lorentz cone; SCALAR ASYMPTOTIC DERIVATIVES; FACILITY LOCATION; COMPLEMENTARITY THEORY; OPTIMIZATION; INVERSIONS; DUALITY; APPROXIMATION; ALGORITHM; MINIMAX; TENSOR;
D O I
10.1007/s10898-018-0710-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we study the spherical convexity of quadratic functions on spherically convex sets. In particular, conditions characterizing the spherical convexity of quadratic functions on spherical convex sets associated to the positive orthants and Lorentz cone are given.
引用
收藏
页码:537 / 545
页数:9
相关论文
共 33 条
[1]   A tensor product matrix approximation problem in quantum physics [J].
Dahl, Geir ;
Leinaas, Jon Magne ;
Myrheim, Jan ;
Ovrum, Eirik .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 420 (2-3) :711-725
[2]   Spherical minimax location problem [J].
Das, P ;
Chakraborti, NR ;
Chaudhuri, PK .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2001, 18 (03) :311-326
[3]   MINIMAX AND MAXIMIN FACILITY LOCATION-PROBLEMS ON A SPHERE [J].
DREZNER, Z ;
WESOLOWSKY, GO .
NAVAL RESEARCH LOGISTICS, 1983, 30 (02) :305-312
[4]   Concepts and techniques of optimization on the sphere [J].
Ferreira, O. P. ;
Iusem, A. N. ;
Nemeth, S. Z. .
TOP, 2014, 22 (03) :1148-1170
[5]   Projections onto convex sets on the sphere [J].
Ferreira, O. P. ;
Iusem, A. N. ;
Nemeth, S. Z. .
JOURNAL OF GLOBAL OPTIMIZATION, 2013, 57 (03) :663-676
[6]   The geometric median on Riemannian manifolds with application to robust atlas estimation [J].
Fletcher, P. Thomas ;
Venkatasubramanian, Suresh ;
Joshi, Sarang .
NEUROIMAGE, 2009, 45 (01) :S143-S152
[7]   Conditions for Strong Ellipticity of Anisotropic Elastic Materials [J].
Han, Deren ;
Dai, H. H. ;
Qi, Liqun .
JOURNAL OF ELASTICITY, 2009, 97 (01) :1-13
[8]  
Isac G, 2006, MATH INEQUAL APPL, V9, P781
[9]   Duality of implicit complementarity problems by using inversions and scalar derivatives [J].
Isac, G. ;
Nemeth, S. Z. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2006, 128 (03) :621-633
[10]   Duality in multivalued complementarity theory by using inversions and scalar derivatives [J].
Isac, G ;
Németh, SZ .
JOURNAL OF GLOBAL OPTIMIZATION, 2005, 33 (02) :197-213