Time-Lapse CSEM Monitoring: Correlating the Anomalous Transverse Resistance with SoPhiH Maps

被引:6
作者
Menezes, Paulo T. L. [1 ,4 ]
Correa, Jorlivan L. [1 ]
Alvim, Leonardo M. [2 ]
Viana, Adriano R. [3 ]
Sansonowski, Rui C. [2 ]
机构
[1] EXP PE AB, Av Henrique Valadares 28, BR-20231030 Rio De Janeiro, Brazil
[2] RES TR GFR, Av Henrique Valadares 28, BR-20231030 Rio De Janeiro, Brazil
[3] EXP PE ACADUP EXP, Av Henrique Valadares 28, BR-20231030 Rio De Janeiro, Brazil
[4] Univ Estado Rio De Janeiro, FGEL, DGAP, R Sao Francisco Xavier 524, BR-20550013 Rio De Janeiro, Brazil
关键词
CSEM monitoring; mature oilfields; SoPhiH maps; sweet spots; anomalous transverse resistance; SOURCE ELECTROMAGNETIC DATA; CAMPOS BASIN; REALISTIC MODEL; MARLIM R3D; INVERSION; WORKFLOW; SIMULATIONS;
D O I
10.3390/en14217159
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The CSEM method, which is frequently used as a risk-reduction tool in hydrocarbon exploration, is finally moving to a new frontier: reservoir monitoring and surveillance. In the present work, we present a CSEM time-lapse interpretation workflow. One essential aspect of our workflow is the demonstration of the linear relationship between the anomalous transverse resistance, an attribute extracted from CSEM data inversion, and the SoPhiH attribute, which is estimated from fluid-flow simulators. Consequently, it is possible to reliably estimate SoPhiH maps from CSEM time-lapse surveys using such a relationship. We demonstrate our workflow's effectiveness in the mature Marlim oilfield by simulating the CSEM time-lapse response after 30 and 40 years of seawater injection and detecting the remaining sweet spots in the reservoir. The Marlim reservoirs are analogous to several turbidite reservoirs worldwide, which can also be appraised with the proposed workflow. The prediction of SoPhiH maps by using CSEM data inversion can significantly improve reservoir time-lapse characterization.
引用
收藏
页数:18
相关论文
共 46 条
  • [1] Alvim L.D.M., 2018, P 80 EAGE C EXH 2018, V2018, P1
  • [2] Using CSEM to monitor production from a complex 3D gas reservoir - A synthetic case study
    Andréis D.
    MacGregor L.
    [J]. Leading Edge (Tulsa, OK), 2011, 30 (09) : 1070 - 1079
  • [3] The electrical resistivity log as an aid in determining some reservoir characteristics
    Archie, GE
    [J]. TRANSACTIONS OF THE AMERICAN INSTITUTE OF MINING AND METALLURGICAL ENGINEERS, 1942, 146 : 54 - 61
  • [4] Stochastic inversion method of time-lapse controlled source electromagnetic data for CO2 plume monitoring
    Ayani, Mohit
    Grana, Dario
    Liu, Mingliang
    [J]. INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2020, 100 (100)
  • [5] Black N., 2011, SEG TECHNICAL PROGRA, P666
  • [6] Black N., 2020, ACTIVE GEOPHYSICAL M, P69
  • [7] Brinkerhoff R., 2016, P AAPG ANN CONV EXH
  • [8] Bruhn C.H.L., 2003, OFFSHORE TECHNOLOGY, DOI [10.4043/15220-MS, DOI 10.4043/15220-MS]
  • [9] mCSEM data interpretation for hydrocarbon exploration: A fast interpretation workflow for drilling decision
    Buonora, Marco Polo P.
    Correa, Jorlivan L.
    Martins, Luciano S.
    Menezes, Paulo T. L.
    Pinho, Emanuel J. C.
    Silva Crepaldi, Joao L.
    Ribas, Mirela P. P.
    Ferreira, Sergio M.
    Freitas, Rafael C.
    [J]. INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION, 2014, 2 (03): : SH1 - SH11
  • [10] Marlim R3D: a realistic model for CSEM simulations - phase I: model building
    Carvalho, Bruno Rodrigues
    Luiz Menezes, Paulo Tarso
    [J]. BRAZILIAN JOURNAL OF GEOLOGY, 2017, 47 (04) : 633 - 644