Design of Full-Scale Endwall Film Cooling of a Turbine Vane

被引:7
|
作者
Liu, Jian [1 ]
Du, Wei [2 ]
Zhang, Guohua [1 ,3 ]
Hussain, Safeer [1 ]
Wang, Lei [1 ]
Xie, Gongnan [3 ]
Sunden, Bengt [1 ]
机构
[1] Lund Univ, Div Heat Transfer, Dept Energy Sci, POB 118, SE-22100 Lund, Sweden
[2] Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China
[3] Northwestern Polytech Univ, Sch Marine Sci & Technol, Xian 710072, Shaanxi, Peoples R China
来源
关键词
film cooling; turbine vane; optimized arrangement; compound angle holes; COMPOUND ANGLE ORIENTATIONS; RESULTS DOWNSTREAM; HEAT-TRANSFER; SINGLE ROW; HOLES; GAS;
D O I
10.1115/1.4045069
中图分类号
O414.1 [热力学];
学科分类号
摘要
Endwall film cooling is a significant cooling method to protect the endwall region and the junction region of endwall and a turbine vane, where usually a relatively high temperature load exists. This work aims to find the optimized arrangement of film cooling holes on the endwall and improve the film cooling in some difficult regions on the endwall, such as pressure side-endwall junction region. Several ideas for film cooling hole arrangement design are proposed, based on the pressure coefficient distribution, the streamline distribution, and the heat transfer coefficient (HTC) distribution, respectively. Four specified designs are built and compared. The results are obtained by numerical calculations with a well-validated turbulence model, the k-omega shear stress transport (SST) model. From this work, the designs based on the pressure coefficient distribution (designs 1 and 2) force the flow from the pressure side to the suction side (SS), especially in design 2, which adopts compound angle holes. The designs based on pressure coefficients have benefit in the cooling of the SS but give worse coolant coverage on the pressure side. In addition, designs 1 and 2 have little influence on the original pressure field. The design based on the streamline distributions (design 3) has larger coolant coverage on the endwall and provides good coolant coverage on the endwall and pressure side junction region. The design based on the HTC distribution provides large overall film cooling effectiveness on both the pressure side and the SS. More film cooling holes are placed on the high temperature regions, which is more effective in practice.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Turbine vane endwall partition film cooling based on the passage vortex core line
    Cheng, Fengna
    Zhang, Jingzhou
    Tian, Xingjiang
    Zhang, Jingyang
    Zhang, Yuyan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 162
  • [22] Conjugate Heat Transfer Validation of an Optimized Film Cooling Configuration for a Turbine Vane Endwall
    Yang, Xing
    Wu, Hang
    Feng, Zhenping
    JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2025, 147 (03):
  • [23] COMPUTATIONAL PREDICTIONS OF ENDWALL FILM COOLING FOR A TURBINE NOZZLE VANE WITH AN ASYMMETRIC CONTOURED PASSAGE
    Okita, Yoji
    Nakamata, Chiyuki
    PROCEEDINGS OF THE ASME TURBO EXPO 2008, VOL 4, PTS A AND B, 2008, : 801 - 811
  • [24] Effects of Upstream Step Geometries on Endwall Film Cooling and Phantom Cooling Performances of a Transonic Turbine Vane
    Bai, Bo
    Li, Zhigang
    Li, Jun
    Mao, Shuo
    Ng, Wing F.
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2022, 14 (12)
  • [25] Numerical analysis and design optimization on full coverage film-cooling for turbine guided vane
    Wang, Mingrui
    Zhu, Huiren
    Liu, Cunliang
    Guo, Tao
    Zhang, Li
    Li, Na
    ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2022, 16 (01) : 904 - 936
  • [26] An Experimental Investigation of Full Coverage Film Cooling Effectiveness of a Turbine Vane
    Hu, Kexin
    Zhang, Zhen
    Su, Xinrong
    Yuan, Xin
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2023, 44 (07): : 1793 - 1799
  • [27] Turbine vane endwall aerothermal and film cooling performance considering realistic swirling inflow conditions
    Li, Zhiyu
    Zhang, Kaiyuan
    Li, Zhigang
    Li, Jun
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2023, 237 (08) : 1662 - 1682
  • [28] Turbine Vane Endwall Film Cooling Effectiveness of Different Purge Slot Configurations in a Linear Cascade
    Mueller, Gunther
    Landfester, Christian
    Boehle, Martin
    Krewinkel, Robert
    JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2020, 142 (03):
  • [29] Turbine Vane Endwall Film Cooling Comparison From Five Film-Hole Design Patterns and Three Upstream Injection Angles
    Shiau, Chao-Cheng
    Sahin, Izzet
    Wang, Nian
    Han, Je-Chin
    Xu, Hongzhou
    Fox, Michael
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2019, 11 (03)
  • [30] TURBINE VANE ENDWALL FILM COOLING EFFECTIVENESS OF DIFFERENT PURGE SLOT CONFIGURATIONS IN A LINEAR CASCADE
    Mueller, Gunther
    Landfester, Christian
    Boehle, Martin
    Krewinkel, Robert
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, 2019, VOL 5B, 2019,