A low-rank Lie-Trotter splitting approach for nonlinear fractional complex Ginzburg-Landau equations

被引:12
作者
Zhao, Yong-Liang [1 ]
Ostermann, Alexander [2 ]
Gu, Xian-Ming [3 ]
机构
[1] Sichuan Normal Univ, Sch Math, Chengdu 610068, Sichuan, Peoples R China
[2] Univ Innsbruck, Dept Math, Technikerstr 13, A-6020 Innsbruck, Austria
[3] Southwestern Univ Finance & Econ, Sch Econ Math, Inst Math, Chengdu 611130, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Dynamical low-rank approximation; Low-rank splitting; Numerical integration methods; Fractional Ginzburg-Landau equations; DIFFERENCE SCHEME; WELL-POSEDNESS; ERROR ANALYSIS; APPROXIMATION; SPACE; INTEGRATOR; ALGORITHM;
D O I
10.1016/j.jcp.2021.110652
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Fractional Ginzburg-Landau equations as generalizations of the classical one have been used to describe various physical phenomena. In this paper, we propose a numerical integration method for space fractional Ginzburg-Landau equations based on a dynamical low-rank approximation. We first approximate the space fractional derivatives by using a fractional centered difference method. Then, the resulting matrix differential equation is split into a stiff linear part and a nonstiff (nonlinear) one. For solving these two subproblems, a dynamical low-rank approach is employed. The convergence of our method is proved rigorously. Numerical examples are reported which show that the proposed method is robust and accurate. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:12
相关论文
共 52 条
[1]   COMPUTING THE ACTION OF THE MATRIX EXPONENTIAL, WITH AN APPLICATION TO EXPONENTIAL INTEGRATORS [J].
Al-Mohy, Awad H. ;
Higham, Nicholas J. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (02) :488-511
[2]   THE LEJA METHOD REVISITED: BACKWARD ERROR ANALYSIS FOR THE MATRIX EXPONENTIAL [J].
Caliari, Marco ;
Kandolf, Peter ;
Ostermann, Alexander ;
Rainer, Stefan .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (03) :A1639-A1661
[3]   Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative [J].
Celik, Cem ;
Duman, Melda .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (04) :1743-1750
[4]   MACROSCOPIC MODELS FOR SUPERCONDUCTIVITY [J].
CHAPMAN, SJ ;
HOWISON, SD ;
OCKENDON, JR .
SIAM REVIEW, 1992, 34 (04) :529-560
[5]  
Dirac PAM., 1981, The principles of quantum mechanics
[6]   ANALYSIS AND APPROXIMATION OF THE GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY [J].
DU, Q ;
GUNZBURGER, MD ;
PETERSON, JS .
SIAM REVIEW, 1992, 34 (01) :54-81
[7]   A LOW-RANK ALGORITHM FOR WEAKLY COMPRESSIBLE FLOW [J].
Einkemmer, Lukas .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (05) :A2795-A2814
[8]   A QUASI-CONSERVATIVE DYNAMICAL LOW-RANK ALGORITHM FOR THE VLASOV EQUATION [J].
Einkemmer, Lukas ;
Lubich, Christian .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (05) :B1061-B1081
[9]   A LOW-RANK PROJECTOR-SPLITTING INTEGRATOR FOR THE VLASOV-POISSON EQUATION [J].
Einkemmer, Lukas ;
Lubich, Christian .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (05) :B1330-B1360
[10]  
Gorenflo R., 1998, Fract. Calc. Appl. Anal, V1, P167