Short-term load forecasting, profile identification, and customer segmentation: A methodology based on periodic time series

被引:179
作者
Espinoza, M [1 ]
Joye, C
Belmans, R
De Moor, B
机构
[1] Katholieke Univ Leuven, SCD Res Div, Dept Elect Engn, ESAT, B-3000 Louvain, Belgium
[2] Belgian Natl Grit Operator ELIA, B-1000 Brussels, Belgium
[3] Katholieke Univ Leuven, ELECTA Div, Dept Elect Engn, ESAT, B-3000 Louvain, Belgium
关键词
load-forecasting; load modeling; time series; clustering methods;
D O I
10.1109/TPWRS.2005.852123
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Results from a project in cooperation with the Belgian National Grid Operator ELIA are presented in this paper. Starting from a set of 245 time series, each one corresponding to four years of measurements from a HV-LV substation, individual modeling using Periodic Time Series yields satisfactory results for short-term forecasting or simulation purposes. In addition, we use the stationarity properties of the estimated models to identify typical daily customer profiles. As each one of the 245 substations can be represented by its unique daily profile, it is possible to cluster the 245 profiles in order to obtain a segmentation of the original sample in different classes of customer profiles. This methodology provides a unified framework for the forecasting and clustering problems.
引用
收藏
页码:1622 / 1630
页数:9
相关论文
共 50 条
  • [41] Short-Term Load Forecasting Method Based on EWT and IDBSCAN
    Qian Zhang
    Jinjin Zhang
    Journal of Electrical Engineering & Technology, 2020, 15 : 635 - 644
  • [42] Short-Term Power Load Forecasting Based on VMD-Pyraformer-Adan
    Tang, Yihao
    Cai, Huafeng
    IEEE ACCESS, 2023, 11 : 61958 - 61967
  • [43] Neural Network Based Approach for Short-Term Load Forecasting
    Osman, Zainab H.
    Awad, Mohamed L.
    Mahmoud, Tawfik K.
    2009 IEEE/PES POWER SYSTEMS CONFERENCE AND EXPOSITION, VOLS 1-3, 2009, : 1162 - +
  • [44] Short-Term Power Load Forecasting Based on HFEMD and GALSTM
    Jin, Ji
    Wang, Bin
    Zhang, Yuhan
    Yu, Min
    Zheng, Xiaojiao
    2021 IEEE IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA (IEEE I&CPS ASIA 2021), 2021, : 1612 - 1617
  • [45] Short-term power load forecasting based on big data
    State Grid Information & Telecommunication Branch, Xicheng District, Beijing
    100761, China
    不详
    100070, China
    不详
    100031, China
    Zhongguo Dianji Gongcheng Xuebao, 1 (37-42): : 37 - 42
  • [46] Short-term Load Forecasting Based on Asymmetric ARCH Models
    Chen, Hao
    Wan, Qiulan
    Zhang, Bing
    Li, Fangxing
    Wang, Yurong
    IEEE PES GENERAL MEETING, 2010,
  • [47] Short-term load forecasting method based on PCC-LSTM model
    Liu Q.
    Liu Y.
    Wen Y.
    He J.
    Li X.
    Bi D.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (12): : 2529 - 2536
  • [48] Short-term Load Forecasting Based on Deep Belief Network
    Kong X.
    Zheng F.
    E Z.
    Cao J.
    Wang X.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2018, 42 (05): : 133 - 139
  • [49] Short-Term Electricity Load Forecasting Based on Temporal Fusion Transformer Model
    Pham Canh Huy
    Nguyen Quoc Minh
    Nguyen Dang Tien
    Tao Thi Quynh Anh
    IEEE ACCESS, 2022, 10 : 106296 - 106304
  • [50] Short-Term Industrial Load Forecasting Based on Ensemble Hidden Markov Model
    Wang, Yuanyuan
    Kong, Yang
    Tang, Xiafei
    Chen, Xiaoqiao
    Xu, Yao
    Chen, Jun
    Sun, Shanfeng
    Guo, Yongsheng
    Chen, Yuhao
    IEEE ACCESS, 2020, 8 : 160858 - 160870