Limits to the Optical Response of Graphene and Two-Dimensional Materials

被引:40
作者
Miller, Owen D. [1 ,2 ]
Ilic, Ognjen [3 ]
Christensen, Thomas [4 ]
Reid, M. T. Homer [5 ]
Atwater, Harry A. [3 ]
Joannopoulos, John D. [4 ]
Soljacic, Mann [4 ]
Johnson, Steven G. [4 ,5 ]
机构
[1] Yale Univ, Dept Appl Phys, New Haven, CT 06511 USA
[2] Yale Univ, Energy Sci Inst, New Haven, CT 06511 USA
[3] CALTECH, Dept Appl Phys & Mat Sci, Pasadena, CA 91125 USA
[4] MIT, Dept Phys, Cambridge, MA 02139 USA
[5] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
2D materials; graphene; upper bounds; near-field optics; nonlocality; RADIATIVE HEAT-TRANSFER; OXIDE-FILMS; PLASMONICS; SCATTERING; TERAHERTZ; LIGHT;
D O I
10.1021/acs.nanolett.7b02007
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Two-dimensional (2D) materials provide a platform for strong light matter interactions, creating wide-ranging design opportunities via new-material discoveries and new methods for geometrical structuring. We derive general upper bounds to the strength of such light matter interactions, given only the optical conductivity of the material, including spatial nonlocality, and otherwise independent of shape and configuration. Our material figure-of-merit shows that highly doped graphene is an optimal material at infrared frequencies, whereas single-atomic-layer silver is optimal in the visible. For quantities ranging from absorption and scattering to near-field spontaneous-emission enhancements and radiative heat transfer, we consider canonical geometrical structures and show that in certain cases the bounds can be approached, while in others there may be significant opportunity for design improvement. The bounds can encourage systematic improvements in the design of ultrathin broadband absorbers, 2D antennas, and near-field energy harvesters.
引用
收藏
页码:5408 / 5415
页数:8
相关论文
共 80 条
  • [11] Christensen T, 2017, THESIS
  • [12] Localized plasmons in graphene-coated nanospheres
    Christensen, Thomas
    Jauho, Antti-Pekka
    Wubs, Martijn
    Mortensen, N. Asger
    [J]. PHYSICAL REVIEW B, 2015, 91 (12)
  • [13] Probing the Ultimate Limits of Plasmonic Enhancement
    Ciraci, C.
    Hill, R. T.
    Mock, J. J.
    Urzhumov, Y.
    Fernandez-Dominguez, A. I.
    Maier, S. A.
    Pendry, J. B.
    Chilkoti, A.
    Smith, D. R.
    [J]. SCIENCE, 2012, 337 (6098) : 1072 - 1074
  • [14] Electromagnetic density of modes for a finite-size three-dimensional structure
    D'Aguanno, G
    Mattiucci, N
    Centini, M
    Scalora, M
    Bloemer, MJ
    [J]. PHYSICAL REVIEW E, 2004, 69 (05): : 4
  • [15] Di Pietro P, 2013, NAT NANOTECHNOL, V8, P556, DOI [10.1038/nnano.2013.134, 10.1038/NNANO.2013.134]
  • [16] Nonlocal electromagnetic response of graphene nanostructures
    Fallahi, Arya
    Low, Tony
    Tamagnone, Michele
    Perruisseau-Carrier, Julien
    [J]. PHYSICAL REVIEW B, 2015, 91 (12):
  • [17] Graphene Plasmonics: Challenges and Opportunities
    Garcia de Abajo, F. Javier
    [J]. ACS PHOTONICS, 2014, 1 (03): : 135 - 152
  • [18] Universal Distance-Scaling of Nonradiative Energy Transfer to Graphene
    Gaudreau, L.
    Tielrooij, K. J.
    Prawiroatmodjo, G. E. D. K.
    Osmond, J.
    Garcia de Abajo, F. J.
    Koppens, F. H. L.
    [J]. NANO LETTERS, 2013, 13 (05) : 2030 - 2035
  • [19] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191
  • [20] Observation of PT-Symmetry Breaking in Complex Optical Potentials
    Guo, A.
    Salamo, G. J.
    Duchesne, D.
    Morandotti, R.
    Volatier-Ravat, M.
    Aimez, V.
    Siviloglou, G. A.
    Christodoulides, D. N.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (09)