Foamed urea-formaldehyde microspheres for removal of heavy metals from aqueous solutions

被引:27
|
作者
Qu, Ping [1 ,2 ,3 ]
Li, Yuncong [3 ]
Huang, Hongying [1 ]
Wu, Guofeng [1 ]
Chen, Jianjun [4 ]
He, Feng [5 ]
Wang, Hailong [6 ,7 ]
Gao, Bin [2 ]
机构
[1] Jiangsu Acad Agr Sci, Recycling Agr Res Ctr, Key Lab Crop & Livestock Integrated Farming, Minist Agr, Nanjing, Peoples R China
[2] Univ Florida, Dept Agr & Biol Engn, Gainesville, FL 32611 USA
[3] Univ Florida, Ctr Trop Res & Educ, Soil & Water Sci Dept, Homestead, FL 33031 USA
[4] Univ Florida, Midflorida Res & Educ Ctr, Apopka, FL 32703 USA
[5] Zhejiang Univ Technol, Coll Environm, Hangzhou 310014, Peoples R China
[6] Zhejiang A&F Univ, Key Lab Soil Contaminat Bioremediat Zhejiang Prov, Hangzhou 311300, Zhejiang, Peoples R China
[7] Foshan Univ, Biochar Engn Technol Res Ctr Guangdong Prov, Sch Environm & Chem Engn, Foshan 528000, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Polymer resins; Pb(II); Cu(II); Cd(II); Adsorption mechanisms; Regeneration; GRAPHENE OXIDE; RESIN; ADSORPTION; IONS; CARBON; LEAD; FABRICATION; GOLD(III); BIOCHAR; ADSORBENTS;
D O I
10.1016/j.chemosphere.2019.125004
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A simple foaming method was applied to fabricate urea formaldehyde (UF) microspheres with cross linked porous structures for environmental remediation of heavy metals. The specific surface area and average pore radius of the resultant foamed UF microspheres were 11-29 m(2)/g and 11-25 nm, respectively, which increased with the increasing molar ratio of formaldehyde to urea. All the foamed UF microspheres showed good removal of heavy metals ions (Pb(II), Cu(II), and Cd(II)) in both single- and mixed-metal solutions. Further investigations of Pb(II) adsorption on a selected UF microspheres showed fast kinetics and relatively high adsorption capacity (21.5 mg/g), which can be attributed to the mesoporous structure and abundance of oxygen surface functional groups of the microspheres. Both experimental and model results showed that chelation or complexation interactions between Pb(II) and the surface functional groups were responsible to the strong adsorption of the heavy metal ions on the microspheres. Hydrochloric acid (0.05 M) successfully desorbed Pb(II) from the post-adsorption microspheres for multiple times and the regenerated microspheres showed high Pb(II) removal rates (>96%) in five adsorption-desorption cycles. With many promising advantages, foamed UF microspheres show great potential as a wastewater treatment agent for heavy metal removal. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] EQUILIBRIUM STUDIES OF HEAVY METALS REMOVAL FROM AQUEOUS SOLUTIONS USING CLINOPTILOLITE
    Zendelska, Afrodita
    Golomeova, Mirjana
    Blazev, Krsto
    ECOLOGY, ECONOMICS, EDUCATION AND LEGISLATION, VOL I, 2015, : 305 - 312
  • [42] Effective removal of heavy metals from aqueous solutions by orange peel xanthate
    Liang Sha
    Guo Xue-yi
    Feng Ning-chuan
    Tian Qing-hua
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2010, 20 : S187 - S191
  • [43] Nanofiltration Membranes for the Removal of Heavy Metals from Aqueous Solutions: Preparations and Applications
    Mahmoud, Alaa El Din
    Mostafa, Esraa
    MEMBRANES, 2023, 13 (09)
  • [44] Removal of heavy metals from aqueous solutions by Cercis siliquastrum L.
    P. Salehi
    B. Asghari
    F. Mohammadi
    Journal of the Iranian Chemical Society, 2008, 5 : S80 - S86
  • [45] Competitive Removal of Heavy Metals from Aqueous Solutions by Montmorillonitic and Calcareous Clays
    Ali Sdiri
    Teruo Higashi
    Rochdi Chaabouni
    Fakher Jamoussi
    Water, Air, & Soil Pollution, 2012, 223 : 1191 - 1204
  • [46] Magnetite nanoparticles for removal of heavy metals from aqueous solutions: synthesis and characterization
    Liliana Giraldo
    Alessandro Erto
    Juan Carlos Moreno-Piraján
    Adsorption, 2013, 19 : 465 - 474
  • [47] Competitive Removal of Heavy Metals from Aqueous Solutions by Montmorillonitic and Calcareous Clays
    Sdiri, Ali
    Higashi, Teruo
    Chaabouni, Rochdi
    Jamoussi, Fakher
    WATER AIR AND SOIL POLLUTION, 2012, 223 (03): : 1191 - 1204
  • [48] Effective removal of heavy metals from aqueous solutions by orange peel xanthate
    梁莎
    郭学益
    冯宁川
    田庆华
    Transactions of Nonferrous Metals Society of China, 2010, 20(S1) (S1) : 187 - 191
  • [49] Coal fly ash and alginate for the removal of heavy metals from aqueous solutions
    Ferrero, F
    Prati, MPG
    ANNALI DI CHIMICA, 1996, 86 (3-4) : 125 - 132
  • [50] Heavy metals removal from aqueous solutions and wastewaters by using various byproducts
    Shaheen, Sabry M.
    Eissa, Fawzy I.
    Ghanem, Khaled M.
    El-Din, Hala M. Gamal
    Al Anany, Fathia S.
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2013, 128 : 514 - 521