Biomaterials based cardiac patches for the treatment of myocardial infarction

被引:29
作者
Chang, Tianqi [1 ,2 ,3 ]
Liu, Chunxia [1 ,2 ]
Lu, Kunyan [4 ]
Wu, Yong [1 ,2 ]
Xu, Mingzhu [3 ]
Yu, Qian [4 ]
Shen, Zhenya [1 ,2 ]
Jiang, Tingbo [3 ]
Zhang, Yanxia [1 ,2 ]
机构
[1] Soochow Univ, Affiliated Hosp 1, Dept Cardiovasc Surg, Suzhou 215006, Peoples R China
[2] Soochow Univ, Inst Cardiovasc Sci, Suzhou 215006, Peoples R China
[3] Soochow Univ, Affiliated Hosp 1, Dept Cardiol, Suzhou 215006, Peoples R China
[4] Soochow Univ, Coll Chem Chem Engn & Mat Sci, State & Local Joint Engn Lab Novel Funct Polymer, Suzhou 215123, Peoples R China
来源
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY | 2021年 / 94卷
基金
中国国家自然科学基金;
关键词
Biomaterials; Cardiac patches; Myocardial infarction; STEM-CELL TRANSPLANTATION; HEPATOCYTE GROWTH-FACTOR; ENGINEERED HEART-TISSUE; COATED MUSCLE PATCH; FUNCTIONAL CONSEQUENCES; BIODEGRADABLE POLYURETHANE; EPICARDIAL DEPOSITION; ELASTOMERIC SCAFFOLDS; DELIVERY PLATFORM; SMOOTH-MUSCLE;
D O I
10.1016/j.jmst.2021.03.062
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Myocardial infarction (MI) is one of the common cardiovascular diseases that occurs with a blockage in one or more of the coronary arteries to lead to the damage of the myocardium, resulting in a life threatening condition. To repair the damaged myocardium in MI, researchers are looking forwards to new ways to postpone the progression of myocardial injury. Cardiac patches, the scaffolds layered on the heart surface, can provide mechanical support for the infarction site and improve cardiac function by delivering various bioactive factors or cells, showing considerable curative effect in the treatment of MI. Biomaterials with certain biocompatibility and mechanical properties have received widespread attention for the application in cardiac patches. In this review, we focus on the recent progress on these biomaterialsbased cardiac patches, which could be categorized into two types according to the sources of materials including (i ) natural materials and ( ii ) synthetic materials. The major advantages and current challenges of each type are discussed and a brief perspective on the future research directions is presented. (c) 2021 Published by Elsevier Ltd on behalf of Chinese Society for Metals.
引用
收藏
页码:77 / 89
页数:13
相关论文
共 160 条
[41]   Composite scaffold provides a cell delivery platform for cardiovascular repair [J].
Godier-Furnemont, Amandine F. G. ;
Martens, Timothy P. ;
Koeckert, Michael S. ;
Wan, Leo ;
Parks, Jonathan ;
Arai, Kotaro ;
Zhang, Geping ;
Hudson, Barry ;
Homma, Shunichi ;
Vunjak-Novakovic, Gordana .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (19) :7974-7979
[42]   Long-Term Functional Benefits of Epicardial Patches as Cell Carriers [J].
Hamdi, Hadhami ;
Planat-Benard, Valerie ;
Bel, Alain ;
Neamatalla, Hany ;
Saccenti, Laetitia ;
Calderon, Damelys ;
Bellamy, Valerie ;
Bon, Martin ;
Perrier, Marie-Cecile ;
Mandet, Chantal ;
Bruneval, Patrick ;
Casteilla, Louis ;
Hagege, Albert A. ;
Puceat, Michel ;
Agbulut, Onnik ;
Menasche, Philippe .
CELL TRANSPLANTATION, 2014, 23 (01) :87-96
[43]   Biodegradable elastic patch plasty ameliorates left ventricular adverse remodeling after ischemia-reperfusion injury: A preclinical study of a porous polyurethane material in a porcine model [J].
Hashizume, Ryotaro ;
Fujimoto, Kazuro L. ;
Hong, Yi ;
Guan, Jianjun ;
Toma, Catalin ;
Tobita, Kimimasa ;
Wagner, William R. .
JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2013, 146 (02) :391-+
[44]   The effect of polymer degradation time on functional outcomes of temporary elastic patch support in ischemic cardiomyopathy [J].
Hashizume, Ryotaro ;
Hong, Yi ;
Takanari, Keisuke ;
Fujimoto, Kazuro L. ;
Tobita, Kimimasa ;
Wagner, William R. .
BIOMATERIALS, 2013, 34 (30) :7353-7363
[45]   Biomaterials affect cell-cell interactions in vitro in tissue engineering [J].
He, Dan ;
Li, Haiyan .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 63 (63) :62-72
[46]   In vitro biological and mechanical evaluation of various scaffold materials for myocardial tissue engineering [J].
Herrmann, Florian E. M. ;
Lehner, Anja ;
Hollweck, Trixi ;
Haas, Ulrike ;
Fano, Cornelia ;
Fehrenbach, David ;
Kozlik-Feldmann, Rainer ;
Wintermantel, Erich ;
Eissner, Gunther ;
Hagl, Christian ;
Akra, Bassil .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2014, 102 (04) :958-966
[47]   Repair of post-infarction left ventricular free wall rupture using an extracellular matrix patch [J].
Holubec, Tomas ;
Caliskan, Etem ;
Bettex, Dominique ;
Maisano, Francesco .
EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY, 2015, 48 (05) :800-803
[48]   Ultra-stiff compressed collagen for corneal perforation patch graft realized byin situphotochemical crosslinking [J].
Hong, Hyeonjun ;
Kim, Jeongho ;
Cho, Hoseong ;
Park, Sang Min ;
Jeon, Mansik ;
Kim, Hong Kyun ;
Kim, Dong Sung .
BIOFABRICATION, 2020, 12 (04)
[49]   Nanoengineered Electroconductive Collagen-Based Cardiac Patch for infarcted Myocardium Repair [J].
Hosoyama, Katsuhiro ;
Ahumada, Manuel ;
McTiernan, Christopher D. ;
Davis, Darryl R. ;
Variola, Fabio ;
Ruel, Marc ;
Liang, Wenbin ;
Suuronen, Erik J. ;
Alarcon, Emilio I. .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (51) :44668-44677
[50]   Bioactive-Tissue-Derived Nanocomposite Hydrogel for Permanent Arterial Embolization and Enhanced Vascular Healing [J].
Hu, Jingjie ;
Altun, Izzet ;
Zhang, Zefu ;
Albadawi, Hassan ;
Salomao, Marcela A. ;
Mayer, Joseph L. ;
Hemachandra, L. P. Madhubhani P. ;
Rehman, Suliman ;
Oklu, Rahmi .
ADVANCED MATERIALS, 2020, 32 (33)