OSCILLATION OF nTH ORDER SUPERLINEAR DYNAMIC EQUATIONS ON TIME SCALES

被引:11
作者
Erbe, Lynn [1 ]
Jia Baoguo [2 ]
Peterson, Allan [1 ]
机构
[1] Univ Nebraska, Dept Math, Lincoln, NE 68588 USA
[2] Zhongshan Univ, Sch Math & Comp Sci, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Oscillation; superlinear dynamic equation; isolated time scale;
D O I
10.1216/RMJ-2011-41-2-471
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the following nth order superlinear dynamic equation x Delta(n) (t) + p(t)x(alpha) (sigma(t)) = 0, alpha > 1, where p is an element of C-rd(T,R+), and T is an isolated time scale, alpha is a ratio of odd positive integers. We obtain an analog of the Kiguradze-Liao-Svec-type oscillation theorem for this dynamic equation. As an application, we obtain (i) when n is even, every solution x(k) of the difference equation Delta(n)x(k) + p(k)x(alpha) (k + 1) = 0, where p(k) >= 0 and alpha > 1 is oscillatory if and only if Sigma(infinity)(k=1)(k + 1)(n - 1) p(k) = infinity. (ii) when n is odd, every solution x(k) of this difference equation is either oscillatory or lim(k-->infinity) x(k) = 0 if and only if the above sum is infinite.
引用
收藏
页码:471 / 491
页数:21
相关论文
共 15 条
[1]  
Agarwal Ravil P, 2000, DIFFERENCE EQUATIONS
[2]  
[Anonymous], ADV DYNAMIC EQUATION
[3]  
[Anonymous], 2000, OSCILLATION THEORY D, DOI DOI 10.1007/978-94-015-9401-1
[4]  
[Anonymous], LECT NOTES MATH
[5]  
[Anonymous], DYNAMIC EQUATIONS TI
[6]  
Atkinson F. V., 1955, PAC J MATH, V5, P643
[7]   A 2ND-ORDER NON-LINEAR DIFFERENCE EQUATION - OSCILLATION AND ASYMPTOTIC-BEHAVIOR [J].
HOOKER, JW ;
PATULA, WT .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1983, 91 (01) :9-29
[8]  
Kac V., 2001, Quantum Calculus
[9]  
KIGURADZE IT, 1962, DOKL AKAD NAUK SSSR+, V144, P33
[10]  
KIGURADZE IT, 1967, CASOPIS PEST MAT, V92, P343, DOI DOI 10.21136/CPM.1967.108395