Homogenization of the Spectral Problem for Periodic Elliptic Operators with Sign-Changing Density Function

被引:10
作者
Nazarov, Sergey A. [1 ]
Pankratova, Iryna L. [2 ,3 ]
Piatnitski, Andrey L. [4 ]
机构
[1] RAS, Inst Problems Mech Engn, St Petersburg 199178, Russia
[2] Narvik Univ Coll, N-8505 Narvik, Norway
[3] Ecole Polytech, CNRS, F-91128 Palaiseau, France
[4] RAS, PN Lebedev Phys Inst, Moscow 119991, Russia
关键词
Dirichlet Problem; Elliptic Operator; Spectral Problem; Negative Eigenvalue; Essential Spectrum;
D O I
10.1007/s00205-010-0370-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper deals with the asymptotic behaviour of spectra of second order self-adjoint elliptic operators with periodic rapidly oscillating coefficients in the case when the density function (the factor on the spectral parameter) changes sign. We study the Dirichlet problem in a regular bounded domain and show that the spectrum of this problem is discrete and consists of two series, one of them tending towards +a and another towards -a. The asymptotic behaviour of positive and negative eigenvalues and their corresponding eigenfunctions depends crucially on whether the average of the weight function is positive, negative or equal to zero. We construct the asymptotics of eigenpairs in all three cases.
引用
收藏
页码:747 / 788
页数:42
相关论文
共 20 条
  • [1] Homogenization of periodic systems with large potentials
    Allaire, G
    Capdeboscq, Y
    Piatnitski, A
    Siess, V
    Vanninathan, M
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2004, 174 (02) : 179 - 220
  • [2] Uniform spectral asymptotics for singularly perturbed locally periodic operators
    Allaire, G
    Piatnitski, A
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (3-4) : 705 - 725
  • [3] [Anonymous], 2012, Homogenization of differential operators and integral functionals
  • [4] [Anonymous], J MATH SCI
  • [5] [Anonymous], ASYMPTOTIC ANAL THIN
  • [6] [Anonymous], 1978, ASYMPTOTIC ANAL PERI
  • [7] Birman M.S., 1987, Spectral theory of self-adjoint operators in Hilbert space
  • [8] Korn's inequality for periodic solids and convergence rate of homogenization
    Cardone, G.
    Esposito, A. Corbo
    Nazarov, S. A.
    [J]. APPLICABLE ANALYSIS, 2009, 88 (06) : 847 - 876
  • [9] Chechkin G., 2007, HOMOGENIZATION METHO, V234
  • [10] GELFAND IM, 1950, DOKL AKAD NAUK SSSR+, V71, P1017