Neuron-specific ablation of eIF5A or deoxyhypusine synthase leads to impairments in growth, viability, neurodevelopment, and cognitive functions in mice

被引:23
|
作者
Kar, Rajesh Kumar [1 ]
Hanner, Ashleigh S. [1 ]
Starost, Matthew F. [2 ]
Springer, Danielle [3 ]
Mastracci, Teresa L. [4 ]
Mirmira, Raghavendra G. [5 ]
Park, Myung Hee [1 ]
机构
[1] NIDCR, Mol & Cellular Biochem Sect, NIH, Bethesda, MD 20892 USA
[2] NHLBI, Div Vet Resources, Diagnost & Res Serv Branch, NIH, Bldg 10, Bethesda, MD 20892 USA
[3] NHLBI, Murine Phenotyping Core, Diagnost & Res Serv Branch, Bldg 10, Bethesda, MD 20892 USA
[4] Indiana Univ Purdue Univ, Dept Biol, Indianapolis, IN 46205 USA
[5] Univ Chicago, Dept Med, 5841 S Maryland Ave, Chicago, IL 60637 USA
基金
美国国家卫生研究院;
关键词
HYPUSINE MODIFICATION; TRANSLATION; SPERMIDINE; PROTEIN; IDENTIFICATION; ELONGATION; EXPRESSION; POLYAMINES; CLONING;
D O I
10.1016/j.jbc.2021.101333
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Eukaryotic initiation factor 5A (eIF5A)(dagger,double dagger) is an essential protein that requires a unique amino acid, hypusine, for its activity. Hypusine is formed exclusively in eIF5A post-translationally via two enzymes, deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase. Each of the genes encoding these proteins, Eif5a, Dhps, and Dohh, is required for mouse embryonic development. Variants in EIF5A or DHPS were recently identified as the genetic basis underlying certain rare neurodevelopmental disorders in humans. To investigate the roles of eIF5A and DHPS in brain development, we generated four conditional KO mouse strains using the Emx1-Cre or Camk2a-Cre strains and examined the effects of temporal-and region-specific deletion of Eif5a or Dhps. The conditional deletion of Dhps or Eif5a by Emx1 promotor-driven Cre expression (E9.5, in the cortex and hippocampus) led to gross defects in forebrain development, reduced growth, and premature death. On the other hand, the conditional deletion of Dhps or Eif5a by Camk2a promoter-driven Cre expression (postnatal, mainly in the CA1 region of the hippocampus) did not lead to global developmental defects; rather, these KO animals exhibited severe impairment in spatial learning, contextual learning, and memory when subjected to the Morris water maze and a contextual learning test. In both models, the Dhps-KO mice displayed more severe impairment than their Eif5a-KO counterparts. The observed defects in the brain, global development, or cognitive functions most likely result from translation errors due to a deficiency in active, hypusinated eIF5A. Our study underscores the important roles of eIF5A and DHPS in neurodevelopment.
引用
收藏
页数:12
相关论文
共 1 条
  • [1] Molecular evolution by change of function - Alkaloid-specific homospermidine synthase retained all properties of deoxyhypusine synthase except binding the eIF5A precursor protein
    Ober, D
    Harms, R
    Witte, L
    Hartmann, T
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (15) : 12805 - 12812