New inequalities of Opial type for conformable fractional integrals

被引:36
作者
Sarikaya, Mehmet Zeki [1 ]
Budak, Huseyin [1 ]
机构
[1] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkey
关键词
Opial inequality; Holder's inequality; conformable fractional integrals;
D O I
10.3906/mat-1606-91
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, some Opial-type inequalities for conformable fractional integrals are obtained using the remainder function of Taylor's theorem for conformable integrals.
引用
收藏
页码:1164 / 1173
页数:10
相关论文
共 16 条
[1]   On conformable fractional calculus [J].
Abdeljawad, Thabet .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :57-66
[2]  
Abu Hammad M., 2014, Int. J. Differ. Equ. Appl., V13, P177
[3]  
Anastassiou G., 2008, B GREEK MATH SOC, V55, P1
[4]  
Anderson DR, CONTRIBUTIO IN PRESS
[5]  
[Anonymous], 1960, Ann. Polon. Math.
[6]  
[Anonymous], 2016, Progress in Fractional Differentiation and Applications, DOI DOI 10.18576/pfda/020204
[7]   SOME GENERALIZED OPIAL-TYPE INEQUALITIES [J].
CHEUNG, WS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 162 (02) :317-321
[8]   SOME NEW OPIAL-TYPE INEQUALITIES [J].
CHEUNG, WS .
MATHEMATIKA, 1990, 37 (73) :136-142
[9]   A new definition of fractional derivative [J].
Khalil, R. ;
Al Horani, M. ;
Yousef, A. ;
Sababheh, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 264 :65-70
[10]  
PACHPATTE B. G., 1993, DEMONSTRATIO MATH, V26, P643