A Poincare Inequality in a Sobolev Space with a Variable Exponent

被引:15
作者
Ciarlet, Philippe G. [1 ]
Dinca, George [2 ]
机构
[1] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] Univ Bucharest, Fac Math & Comp Sci, Bucharest 010014, Romania
关键词
Poincare inequality; Sobolev spaces with variable exponent;
D O I
10.1007/s11401-011-0648-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega be a domain in R-N. It is shown that a generalized Poincare inequality holds in cones contained in the Sobolev space W-1,W-p(.)(Omega), where p(.) : (Omega) over bar -> [1,infinity[ is a variable exponent. This inequality is itself a corollary to a more general result about equivalent norms over such cones. The approach in this paper avoids the difficulty arising from the possible lack of density of the space D(Omega) in the space {v is an element of W-1,W-p(.)(Omega); tr v = 0 on partial derivative Omega}. Two applications are also discussed.
引用
收藏
页码:333 / 342
页数:10
相关论文
共 13 条
[1]  
Adams R., 1985, Sobolev Spaces
[2]  
CHIPOT M, 2000, BIRK ADV TEXT, pR7
[3]  
CIARLET P. G., 2002, Classics in Appl. Math., V40
[4]  
Diening L, 2004, MATH INEQUAL APPL, V7, P245
[5]   A priori estimates for the vector p-Laplacian with potential boundary conditions [J].
Dinca, George ;
Jebelean, Petru .
ARCHIV DER MATHEMATIK, 2008, 90 (01) :60-69
[6]   Boundary trace embedding theorems for variable exponent Sobolev spaces [J].
Fan, Xianling .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (02) :1395-1412
[7]   On the spaces Lp(x)(Ω) and Wm, p(x)(Ω) [J].
Fan, XL ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :424-446
[8]   Poincare inequalities in reflexive cones [J].
Jebelean, Petru ;
Precup, Radu .
APPLIED MATHEMATICS LETTERS, 2011, 24 (03) :359-363
[9]  
KOVACIK O, 1991, CZECH MATH J, V41, P592
[10]  
Maeda F.-Y., 2008, JIPAM J. Inequ. Pure Appl. Math., V9, P5