Finsler geometry as a model for relativistic gravity

被引:44
作者
Laemmerzahl, Claus [1 ,2 ]
Perlick, Volker [1 ]
机构
[1] Univ Bremen, ZARM, D-28159 Bremen, Germany
[2] Carl von Ossietzky Univ Oldenburg, Inst Phys, D-26111 Oldenburg, Germany
关键词
Finsler gravity; Maxwell equations; Klein-Gordon equation; Dirac equation; SPACE; TIME;
D O I
10.1142/S0219887818501669
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give an overview on the status and on the perspectives of Finsler gravity, beginning with a discussion of various motivations for considering a Finslerian modification of General Relativity. The subjects covered include Finslerian versions of Maxwell's equations, of the Klein-Gordon equation and of the Dirac equation, and several experimental tests of Finsler gravity.
引用
收藏
页数:20
相关论文
共 42 条
[1]  
Javaloyes MA, 2014, ANN SCUOLA NORM-SCI, V13, P813
[2]  
[Anonymous], THEORY EXPT GRAVITAT
[3]  
[Anonymous], THESIS
[4]  
Asanov G.S., 1985, FINSLER GEOMETRY REL
[5]   GRAVITATIONAL-FIELD EQUATIONS BASED ON FINSLER GEOMETRY [J].
ASANOV, GS .
FOUNDATIONS OF PHYSICS, 1983, 13 (05) :501-527
[6]  
Bao D., 2012, An Introduction to Riemann-Finsler Geometry, V200
[7]   INDEFINITE FINSLER SPACES AND TIMELIKE SPACES [J].
BEEM, JK .
CANADIAN JOURNAL OF MATHEMATICS, 1970, 22 (05) :1035-+
[8]   Concerning the generalized Lorentz symmetry and the generalization of the Dirac equation's [J].
Bogoslovsky, GY ;
Goenner, HF .
PHYSICS LETTERS A, 2004, 323 (1-2) :40-47
[9]  
Childs L., 1978, LINEAR MULTILINEAR A, V5, P276
[10]  
Ehlers J., 1972, General relativity, P63