DISCONTINUOUS FAST FOURIER TRANSFORM WITH TRIANGLE MESH FOR TWO-DIMENSIONAL DISCONTINUOUS FUNCTIONS

被引:7
|
作者
Liu, Y. -H. [1 ]
Liu, Q. H. [2 ]
Nie, Z. -P. [3 ]
Zhao, Z. -Q. [3 ]
机构
[1] SW China Res Inst Elect Equipment, Chengdu 610036, Sichuan, Peoples R China
[2] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
[3] Univ Elect Sci & Technol China, Sch Elect Engn, Chengdu 610054, Sichuan, Peoples R China
关键词
ACCURATE ALGORITHM; SCATTERING;
D O I
10.1163/156939311795253975
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In computational electromagnetics and other areas of computational science, Fourier transforms of discontinuous functions are frequently encountered. This paper extends the discontinuous fast Fourier transform (DFFT) algorithm which was presented previously by Fan and Liu to deal with the two dimensional (2-D) function with a discontinuous boundary of arbitrary shape. First, the proposed algorithm discretizes the support domain of the function by triangle mesh, which reduces the stair-casing error of an orthogonal grid required by FFT. Second, the algorithm adopts the basic idea of double interpolation used by the original 1-D DFFT algorithm in the literature, but with a significant modification that the nonuniform fast Fourier transform (NUFFT) with the least square error (LSE) interpolation other than a Lagrange interpolation is used to process nonuniformly spaced samples of the exponentials. The proposed 2-D DFFT algorithms obtain much higher accuracy than the conventional 2-D FFT for the discontinuous functions while maintaining similar computational complexity as that of the 2-D FFT.
引用
收藏
页码:1045 / 1057
页数:13
相关论文
共 50 条
  • [31] Use of two-dimensional Fast Fourier Transform in harmonic modulated thermal diffusion
    Grp. de Rech. Surf. et Mat., Lab. d'Energetique et d'Optique, Faculté des Sciences de Reims, BP 1039, 51 687 Reims Cedex 2, France
    Int. J. Heat Mass Transf., 17 (3761-3764):
  • [32] Azimuthal jittered sampling of bandlimited functions in the two-dimensional Fourier transform and the Hankel transform domains
    Sun, Ao
    Liang, Zi-Yue
    Liu, Wen-Hua
    Li, Jing-Chi
    Wu, An-Yang
    Shi, Xi-Ya
    Chen, Yun-Jie
    Zhang, Zhi-Chao
    OPTIK, 2021, 242 (242):
  • [33] A TWO-DIMENSIONAL FAST COSINE TRANSFORM
    HAQUE, MA
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1985, 33 (06): : 1532 - 1539
  • [34] FAST TWO-DIMENSIONAL HARTLEY TRANSFORM
    BRACEWELL, RN
    BUNEMAN, O
    HAO, H
    VILLASENOR, J
    PROCEEDINGS OF THE IEEE, 1986, 74 (09) : 1282 - 1283
  • [35] The Two-Dimensional Clifford-Fourier Transform
    Fred Brackx
    Nele De Schepper
    Frank Sommen
    Journal of Mathematical Imaging and Vision, 2006, 26 : 5 - 18
  • [36] The two-dimensional Clifford-Fourier transform
    Brackx, Fred
    De Schepper, Nele
    Sommen, Frank
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2006, 26 (1-2) : 5 - 18
  • [37] Two-dimensional Fourier transform electronic spectroscopy
    Hybl, JD
    Ferro, AA
    Jonas, DM
    JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (14): : 6606 - 6622
  • [38] Nonseparable two-dimensional fractional Fourier transform
    Sahin, A
    Kutay, MA
    Ozaktas, HM
    APPLIED OPTICS, 1998, 37 (23): : 5444 - 5453
  • [39] Nonseparable two-dimensional fractional Fourier transform
    Sahin, Aysegul
    Alper Kutay, M.
    Ozaktas, Haldun M.
    Applied Optics, 1998, 37 (23): : 5444 - 5453
  • [40] Noninterferometric Two-Dimensional Fourier Transform Spectroscopy
    Davis, J. A.
    Dao, L. V.
    Hannaford, P.
    Nugent, K. A.
    Quiney, H. M.
    ULTRAFAST PHENOMENA XVI, 2009, 92 : 962 - +