An Axiomatic Approach for Degenerations in Triangulated Categories

被引:2
作者
Saorin, Manuel [1 ]
Zimmermann, Alexander [2 ,3 ]
机构
[1] Univ Murcia, Dept Matemat, Aptdo 4021, E-30100 Murcia, Spain
[2] Univ Picardie, Dept Math, 33 Rue St Leu, F-80039 Amiens 1, France
[3] Univ Picardie, LAMFA, UMR 7352, CNRS, 33 Rue St Leu, F-80039 Amiens 1, France
关键词
Degeneration; Triangulated categories; Zwara-Riedtmann theorem; Yoshino's degeneration;
D O I
10.1007/s10485-015-9401-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalise Yoshino's definition of a degeneration of two Cohen Macaulay modules to a definition of degeneration between two objects in a triangulated category. We derive some natural properties for the triangulated category and the degeneration under which the Yoshino-style degeneration is equivalent to the degeneration defined by a specific distinguished triangle analogous to Zwara's characterisation of degeneration in module varieties.
引用
收藏
页码:385 / 405
页数:21
相关论文
共 50 条
  • [21] FROM TRIANGULATED CATEGORIES TO MODULE CATEGORIES VIA LOCALISATION
    Buan, Aslak Bakke
    Marsh, Robert J.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (06) : 2845 - 2861
  • [22] Symmetry of the Definition of Degeneration in Triangulated Categories
    Manuel Saorín
    Alexander Zimmermann
    [J]. Algebras and Representation Theory, 2019, 22 : 801 - 836
  • [23] Asymptotic shifting numbers in triangulated categories
    Fan, Yu-Wei
    Filip, Simion
    [J]. ADVANCES IN MATHEMATICS, 2023, 428
  • [24] K1 for triangulated categories
    Vaknin, A
    [J]. K-THEORY, 2001, 24 (01): : 1 - 56
  • [25] Three notions of dimension for triangulated categories
    Elagin, Alexey
    Lunts, Valery A.
    [J]. JOURNAL OF ALGEBRA, 2021, 569 : 334 - 376
  • [26] Resolving resolution dimensions in triangulated categories
    Ma, Xin
    Zhao, Tiwei
    [J]. OPEN MATHEMATICS, 2021, 19 (01): : 121 - 143
  • [27] Symmetry of the Definition of Degeneration in Triangulated Categories
    Saorin, Manuel
    Zimmermann, Alexander
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2019, 22 (04) : 801 - 836
  • [28] REMARKS ON GENERATORS AND DIMENSIONS OF TRIANGULATED CATEGORIES
    Orlov, Dmitri
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2009, 9 (01) : 153 - 159
  • [29] From triangulated categories to abelian categories: cluster tilting in a general framework
    Steffen Koenig
    Bin Zhu
    [J]. Mathematische Zeitschrift, 2008, 258 : 143 - 160
  • [30] From triangulated categories to abelian categories: cluster tilting in a general framework
    Koenig, Steffen
    Zhu, Bin
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2008, 258 (01) : 143 - 160