Graphdiyne nanostructure for high-performance lithium-sulfur batteries

被引:68
|
作者
Wang, Fan [1 ,2 ]
Zuo, Zicheng [1 ]
Li, Liang [1 ,2 ]
He, Feng [1 ]
Li, Yuliang [1 ,2 ]
机构
[1] Chinese Acad Sci, CAS Res Educ Ctr Excellence Mol Sci, Inst Chem, BNLMS, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Dept Chem, Beijing 100049, Peoples R China
基金
美国国家科学基金会;
关键词
Lithium-sulfur batteries; Graphdiyne; Mass transfer; Carbon material; Polyanion; LI-S; IN-SITU; ARCHITECTURES; SEPARATOR; CATHODE;
D O I
10.1016/j.nanoen.2019.104307
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The advantages of an enhanced inner mass transfer in the primary nanostructure have been ignored for a long time in the lithium-sulfur (Li-S) batteries. This paper demonstrates the construction of Nafion@graphdiyne core-shell nanostructure, which first embeds a polyanion (Nafion) seamlessly in an all-carbon nanostructure of graphdiyne. The graphdiyne acts as the conductive and mechanical backbone to store sulfur and offers active epicenters (sp-hybridized carbon) for the cathodic reaction. The embedded Nafion greatly enhances the inner mass transfer behavior in the primary nanostructure, thus improves the phase transformation reaction, leading to the efficient suppression of the polysulfides shuttle. The Li-S battery incorporating such core-shell nanostructure performs high retention in its capacity even after 800 cycles at high current densities (0.5C and 1C). A high volume capacity of 1832 A h L-1, which is 53% of the theoretical value of sulfur is obtained succesfully. This core-shell nanostructure appears to produce new phenomena, properties, and functions. It can be applicable in, for example, catalysis, fuel cells, and supercapacitors, as well as batteries.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Phosphorous Pentasulfide as a Novel Additive for High-Performance Lithium-Sulfur Batteries
    Lin, Zhan
    Liu, Zengcai
    Fu, Wujun
    Dudney, Nancy J.
    Liang, Chengdu
    ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (08) : 1064 - 1069
  • [32] An Ionic Liquid Electrolyte Additive for High-Performance Lithium-Sulfur Batteries
    Guan, Zeliang
    Bai, Ling
    Du, Binyang
    MATERIALS, 2023, 16 (23)
  • [33] A polymer organosulfur redox mediator for high-performance lithium-sulfur batteries
    Liu, Yu-Hao
    Chang, Wei
    Qu, Jin
    Sui, Yan-Qiu
    Abdelkrim, Yasmine
    Liu, Hong-Jun
    Zhai, Xian-Zhi
    Guo, Yu-Guo
    Yu, Zhong-Zhen
    Energy Storage Materials, 2022, 46 : 313 - 321
  • [34] New flexible separators for modification of high-performance lithium-sulfur batteries
    Chen, Anjie
    Xue, Jiaojiao
    He, Jinhai
    Sun, Bowen
    Sun, Zhiqiang
    Sun, Lijuan
    Sun, Zixu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1005
  • [35] New Development of Key Materials for High-Performance Lithium-Sulfur Batteries
    Liang Xiao
    Wen Zhaoyin
    Liu Yu
    PROGRESS IN CHEMISTRY, 2011, 23 (2-3) : 520 - 526
  • [36] Unexpected Effect of Electrode Architecture on High-Performance Lithium-Sulfur Batteries
    Xiao, Peitao
    Sun, Lixia
    Liao, Dankui
    Agboola, Phillips O.
    Shakir, Imran
    Xu, Yuxi
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (39) : 33269 - 33275
  • [37] Size effect of electrocatalyst enabled high-performance lithium-sulfur batteries
    Gao, Lintong
    Jing, Bo
    Wang, Xianyou
    Cao, Qi
    Ma, Zhongyun
    MATERIALS TODAY CHEMISTRY, 2024, 42
  • [38] Catalytic engineering for polysulfide conversion in high-performance lithium-sulfur batteries
    Du, Shibo
    Yu, Yiyao
    Liu, Xianbin
    Lu, Dunqi
    Yue, Xiaohan
    Liu, Ting
    Yin, Yanhong
    Wu, Ziping
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 186 : 110 - 131
  • [39] A polymer organosulfur redox mediator for high-performance lithium-sulfur batteries
    Liu, Yu-Hao
    Chang, Wei
    Qu, Jin
    Sui, Yan-Qiu
    Abdelkrim, Yasmine
    Liu, Hong-Jun
    Zhai, Xian-Zhi
    Guo, Yu-Guo
    Yu, Zhong-Zhen
    ENERGY STORAGE MATERIALS, 2022, 46 : 313 - 321
  • [40] Polydopamine-coated separator for high-performance lithium-sulfur batteries
    Zhian Zhang
    Zhiyong Zhang
    Jie Li
    Yanqing Lai
    Journal of Solid State Electrochemistry, 2015, 19 : 1709 - 1715