EMOCS: Evolutionary Multi-objective Optimisation for Clinical Scorecard Generation

被引:0
|
作者
Fraser, Diane P. [1 ]
Keedwell, Edward [1 ]
Michell, Stephen L. [1 ]
Sheridan, Ray [2 ]
机构
[1] Univ Exeter, Exeter, Devon, England
[2] RD&E Hosp, Exeter, Devon, England
基金
英国工程与自然科学研究理事会;
关键词
Multi-objective optimisation; Evolutionary programming; Medicine; Prediction/forecasting;
D O I
10.1145/3321707.3321802
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clinical scorecards of risk factors associated with disease severity or mortality outcome are used by clinicians to make treatment decisions and optimize resources. This study develops an automated tool or framework based on evolutionary algorithms for the derivation of scorecards from clinical data. The techniques employed are based on the NSGA-II Multi-objective Optimization Genetic Algorithm (GA) which optimizes the Pareto-front of two clinically-relevant scorecard objectives, size and accuracy. Three automated methods are presented which improve on previous manually derived scorecards. The first is a hybrid algorithm which uses the GA for feature selection and a decision tree for scorecard generation. In the second, the GA generates the full scorecard. The third is an extended full scoring system in which the GA also generates the scorecard scores. In this system combinations of features and thresholds for each scorecard point are selected by the algorithm and the evolutionary process is used to discover near-optimal Pareto-fronts of scorecards for exploration by expert decision makers. This is shown to produce scorecards that improve upon a human derived example for C. Difficile, an important infection found globally in communities and hospitals, although the methods described are applicable to any disease where the required data is available.
引用
收藏
页码:1174 / 1182
页数:9
相关论文
共 50 条
  • [1] Multi-Objective Evolutionary Beer Optimisation
    al-Rifaie, Mohammad Majid
    Cavazza, Marc
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 683 - 686
  • [2] Evolutionary multi-objective optimisation: a survey
    Nedjah, Nadia
    Mourelle, Luiza de Macedo
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2015, 7 (01) : 1 - 25
  • [3] Evolutionary Dynamic Multi-objective Optimisation: A Survey
    Jiang, Shouyong
    Zou, Juan
    Yang, Shengxiang
    Yao, Xin
    ACM COMPUTING SURVEYS, 2023, 55 (04)
  • [4] On the Effect of Populations in Evolutionary Multi-Objective Optimisation
    Giel, Oliver
    Lehre, Per Kristian
    EVOLUTIONARY COMPUTATION, 2010, 18 (03) : 335 - 356
  • [5] Multi-objective evolutionary optimisation of microwave oscillators
    Brito, LDC
    de Carvalho, P
    Bermúdez, LA
    ELECTRONICS LETTERS, 2004, 40 (11) : 677 - 678
  • [6] Evolutionary Multi-objective Optimisation in Neurotrajectory Prediction
    Galvan, Edgar
    Stapleton, Fergal
    APPLIED SOFT COMPUTING, 2023, 146
  • [7] A Parallel Evolutionary System for Multi-objective Optimisation
    Hamdan, Mohammad
    Rudolph, Gunter
    Hochstrate, Nicola
    2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [8] Evolutionary Multi-objective Optimisation of Business Processes
    Tiwari, Ashutosh
    Vergidis, Kostas
    Turner, Chris
    SOFT COMPUTING IN INDUSTRIAL APPLICATIONS - ALGORITHMS, INTEGRATION, AND SUCCESS STORIES, 2010, 75 : 293 - 301
  • [9] Evolutionary multi-objective optimisation by diversity control
    Kulvanit, Pasan
    Piroonratana, Theera
    Chaiyaratana, Nachol
    Laowattana, Djitt
    COMPUTER SCIENCE - THEORY AND APPLICATIONS, 2006, 3967 : 447 - 456
  • [10] An evolutionary programming algorithm for multi-objective optimisation
    Lewis, A
    Abramson, D
    CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 1926 - 1932