Complete Nucleomorph Genome Sequence of the Nonphotosynthetic Alga Cryptomonas paramecium Reveals a Core Nucleomorph Gene Set

被引:51
作者
Tanifuji, Goro [1 ]
Onodera, Naoko T. [1 ]
Wheeler, Travis J. [2 ]
Dlutek, Marlena [1 ]
Donaher, Natalie [1 ]
Archibald, John M. [1 ]
机构
[1] Dalhousie Univ, Canadian Inst Adv Res, Dept Biochem & Mol Biol, Integrated Microbial Biodivers Program, Halifax, NS, Canada
[2] Howard Hughes Med Inst, Chevy Chase, MD USA
关键词
nucleomorph; cryptomonads; chlorarachniophytes; genome reduction; endosymbiosis; PLASTID GENOME; RIBOSOMAL-RNA; PHOTOSYNTHETIC EUKARYOTES; KARYOTYPE DIVERSITY; MOLECULAR PHYLOGENY; NUCLEOTIDE-SEQUENCE; CRYPTOPHYTE ALGA; RDNA PHYLOGENY; EVOLUTION; NUCLEAR;
D O I
10.1093/gbe/evq082
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nucleomorphs are the remnant nuclei of algal endosymbionts that were engulfed by nonphotosynthetic host eukaryotes. These peculiar organelles are found in cryptomonad and chlorarachniophyte algae, where they evolved from red and green algal endosymbionts, respectively. Despite their independent origins, cryptomonad and chlorarachniophyte nucleomorph genomes are similar in size and structure: they are both <1 million base pairs in size (the smallest nuclear genomes known), comprised three chromosomes, and possess subtelomeric ribosomal DNA operons. Here, we report the complete sequence of one of the smallest cryptomonad nucleomorph genomes known, that of the secondarily nonphotosynthetic cryptomonad Cryptomonas paramecium. The genome is 486 kbp in size and contains 518 predicted genes, 466 of which are protein coding. Although C. paramecium lacks photosynthetic ability, its nucleomorph genome still encodes 18 plastid-associated proteins. More than 90% of the "conserved" protein genes in C. paramecium (i.e., those with clear homologs in other eukaryotes) are also present in the nucleomorph genomes of the cryptomonads Guillardia theta and Hemiselmis andersenii. In contrast, 143 of 466 predicted C. paramecium proteins (30.7%) showed no obvious similarity to proteins encoded in any other genome, including G. theta and H. andersenii. Significantly, however, many of these "nucleomorph ORFans" are conserved in position and size between the three genomes, suggesting that they are in fact homologous to one another. Finally, our analyses reveal an unexpected degree of overlap in the genes present in the independently evolved chlorarachniophyte and cryptomonad nucleomorph genomes: similar to 80% of a set of 120 conserved nucleomorph genes in the chlorarachniophyte Bigelowiella natans were also present in all three cryptomonad nucleomorph genomes. This result suggests that similar reductive processes have taken place in unrelated lineages of nucleomorph-containing algae. Key words: nucleomorph, cryptomonads, chlorarachniophytes, genome reduction, endosymbiosis.
引用
收藏
页码:44 / 54
页数:11
相关论文
共 60 条
[41]   Origin of an Alternative Genetic Code in the Extremely Small and GC-Rich Genome of a Bacterial Symbiont [J].
McCutcheon, John P. ;
McDonald, Bradon R. ;
Moran, Nancy A. .
PLOS GENETICS, 2009, 5 (07)
[42]   MOLECULAR PHYLOGENY OF CHLORARACHNIOPHYTES BASED ON PLASTID RIBOSOMAL-RNA AND RBCL SEQUENCES [J].
MCFADDEN, GI ;
GILSON, PR ;
WALLER, RF .
ARCHIV FUR PROTISTENKUNDE, 1995, 145 (3-4) :231-239
[43]   Nucleomorph Genomes [J].
Moore, Christa E. ;
Archibald, John M. .
ANNUAL REVIEW OF GENETICS, 2009, 43 :251-264
[44]   The Dynamics and Time Scale of Ongoing Genomic Erosion in Symbiotic Bacteria [J].
Moran, Nancy A. ;
McLaughlin, Heather J. ;
Sorek, Rotem .
SCIENCE, 2009, 323 (5912) :379-382
[45]   The 160-kilobase genome of the bacterial endosymbiont Carsonella [J].
Nakabachi, Atsushi ;
Yamashita, Atsushi ;
Toh, Hidehiro ;
Ishikawa, Hajime ;
Dunbar, Helen E. ;
Moran, Nancy A. ;
Hattori, Masahira .
SCIENCE, 2006, 314 (5797) :267-267
[46]   Bacterial Genes in the Aphid Genome: Absence of Functional Gene Transfer from Buchnera to Its Host [J].
Nikoh, Naruo ;
McCutcheon, John P. ;
Kudo, Toshiaki ;
Miyagishima, Shin-ya ;
Moran, Nancy A. ;
Nakabachi, Atsushi .
PLOS GENETICS, 2010, 6 (02)
[47]   Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages [J].
Patron, Nicola J. ;
Inagaki, Yuji ;
Keeling, Patrick J. .
CURRENT BIOLOGY, 2007, 17 (10) :887-891
[48]   Comparative rates of evolution in endosymbiotic nuclear genomes [J].
Patron, Nicola J. ;
Rogers, Matthew B. ;
Keeling, Patrick J. .
BMC EVOLUTIONARY BIOLOGY, 2006, 6 (1)
[49]   Nucleomorph karyotype diversity in the freshwater cryptophyte genus Cryptomonas [J].
Phipps, Kyle D. ;
Donaher, Natalie A. ;
Lane, Christopher E. ;
Archibald, John M. .
JOURNAL OF PHYCOLOGY, 2008, 44 (01) :11-14
[50]   THE PRESENCE OF A NUCLEOMORPH HSP70 GENE IS A COMMON FEATURE OF CRYPTOPHYTA AND CHLORARACHNIOPHYTA [J].
RENSING, SA ;
GODDEMEIER, M ;
HOFMANN, CJB ;
MAIER, UG .
CURRENT GENETICS, 1994, 26 (5-6) :451-455