The stability of the Kronecker product of Schur functions

被引:33
作者
Briand, Emmanuel [2 ]
Orellana, Rosa [3 ]
Rosas, Mercedes [1 ]
机构
[1] Univ Seville, Dept Algebra, E-41012 Seville, Spain
[2] Univ Seville, Dept Matemat Aplicada, E-41012 Seville, Spain
[3] Dartmouth Coll, Dept Math, Hanover, NH 03755 USA
关键词
Kronecker product; Internal product; Symmetric functions; IRREDUCIBLE REPRESENTATIONS; SYMMETRICAL GROUP; CHARACTERS; COEFFICIENTS; PLETHYSMS;
D O I
10.1016/j.jalgebra.2010.12.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the late 1930s Murnaghan discovered the existence of a stabilization phenomenon for the Kronecker product of Schur functions. For n sufficiently large, the values of the Kronecker coefficients appearing in the product of two Schur functions of degree n do not depend on the first part of the indexing partitions, but only on the values of their remaining parts. We compute the exact value of n for which all the coefficients of a Kronecker product of Schur functions stabilize. We also compute two new bounds for the stabilization of a sequence of coefficients and show that they improve existing bounds of M. Brion and E. Vallejo. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:11 / 27
页数:17
相关论文
共 26 条
[1]  
[Anonymous], CAMBRIDGE STUD ADV M
[2]  
Ballantine CM, 2005, ELECTRON J COMB, V12
[3]  
BRIAND E, DISCRETE MATH THEORE
[4]   Reduced Kronecker Coefficients and Counter-Examples to Mulmuley's Strong Saturation Conjecture SH [J].
Briand, Emmanuel ;
Orellana, Rosa ;
Rosas, Mercedes .
COMPUTATIONAL COMPLEXITY, 2009, 18 (04) :577-600
[5]   STABLE PROPERTIES OF PLETHYSM - ON 2 CONJECTURES OF FOULKES [J].
BRION, M .
MANUSCRIPTA MATHEMATICA, 1993, 80 (04) :347-371
[6]   SYMMETRIC GROUP - CHARACTERS, PRODUCTS AND PLETHYSMS [J].
BUTLER, PH ;
KING, RC .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (09) :1176-1183
[7]   Nonzero Kronecker coefficients and what they tell us about spectra [J].
Christandl, Matthias ;
Harrow, Aram W. ;
Mitchison, Graeme .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (03) :575-585
[8]  
CLAUSEN M, 1993, BAYREUTHER MATH SCHR, V45, P1
[9]   ON THE KRONECKER PRODUCT OF S(N) CHARACTERS [J].
DVIR, Y .
JOURNAL OF ALGEBRA, 1993, 154 (01) :125-140
[10]   Eigenvalues, invariant factors, highest weights, and Schubert calculus [J].
Fulton, W .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 37 (03) :209-249