Relational Symplectic Groupoids

被引:12
作者
Cattaneo, Alberto S. [1 ]
Contreras, Ivan [2 ]
机构
[1] Univ Zurich Irchel, Inst Math, CH-8057 Zurich, Switzerland
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94305 USA
关键词
symplectic groupoids; canonical relations; Poisson sigma models; Poisson structures; INTEGRABILITY;
D O I
10.1007/s11005-015-0760-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This note introduces the construction of relational symplectic groupoids as a way to integrate every Poisson manifold. Examples are provided and the equivalence, in the integrable case, with the usual notion of symplectic groupoid is discussed.
引用
收藏
页码:723 / 767
页数:45
相关论文
共 25 条
[1]  
Andersen J.E., ARXIV11096295MATHQA
[2]   THE HOLONOMY GROUPOID OF A LOCALLY TOPOLOGICAL GROUPOID [J].
AOF, MAESAF ;
BROWN, R .
TOPOLOGY AND ITS APPLICATIONS, 1992, 47 (02) :97-113
[3]  
Bates S., 1997, BERKELEY MATH LECT N, V8
[4]  
Brown R., 1996, CAH TOP GEOM DIFF CA, V37, P61
[5]   Integration of twisted Dirac brackets [J].
Bursztyn, H ;
Crainic, M ;
Weinstein, A ;
Zhu, CC .
DUKE MATHEMATICAL JOURNAL, 2004, 123 (03) :549-607
[6]  
Cattaneo A. S., 2011, P CORFU SUMMER I 201
[7]  
Cattaneo A.S., 2012, COMM MATH P IN PRESS
[8]  
Cattaneo A.S., 2014, P SUMM SCH GEOM TOP
[9]  
Cattaneo AS, 2008, CONTEMP MATH, V450, P79
[10]   Coisotropic Submanifolds and Dual Pairs [J].
Cattaneo, Alberto S. .
LETTERS IN MATHEMATICAL PHYSICS, 2014, 104 (03) :243-270