Semantic-Specific Hierarchical Alignment Network for Heterogeneous Graph Adaptation

被引:2
作者
Zhuang, YuanXin [1 ]
Shi, Chuan [1 ]
Yang, Cheng [1 ]
Zhuang, Fuzhen [2 ,3 ]
Song, Yangqiu [4 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing 100876, Peoples R China
[2] Beihang Univ, Inst Artificial Intelligence, Beijing 100191, Peoples R China
[3] Beihang Univ, Sch Comp Sci, SKLSDE, Beijing 100191, Peoples R China
[4] Hong Kong Univ Sci & Technol, Hong Kong 999077, Peoples R China
来源
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: RESEARCH TRACK, PT II | 2021年 / 12976卷
基金
中国国家自然科学基金;
关键词
Heterogeneous graph; Domain adaptation; Graph neural network;
D O I
10.1007/978-3-030-86520-7_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Node classification has been substantially improved with the advent of Heterogeneous Graph Neural Networks (HGNNs). However, collecting numerous labeled data is expensive and time-consuming in many applications. Domain Adaptation (DA) tackles this problem by transferring knowledge from a label-rich domain to a label-scarce one. However the heterogeneity and rich semantic information bring great challenges for adapting HGNN for DA. In this paper, we propose a novel semanticspecific hierarchical alignment network for heterogeneous graph adaptation, called HGA. HGA designs a sharing-parameters HGNN aggregating path-based neighbors and hierarchical domain alignment strategies with the MMD and L-1 normalization term. Extensive experiments on four datasets demonstrate that the proposed model can achieve remarkable results on node classification.
引用
收藏
页码:335 / 350
页数:16
相关论文
共 30 条
[1]   Metapath-guided Heterogeneous Graph Neural Network for Intent Recommendation [J].
Fan, Shaohua ;
Zhu, Junxiong ;
Han, Xiaotian ;
Shi, Chuan ;
Hu, Linmei ;
Ma, Biyu ;
Li, Yongliang .
KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, :2478-2486
[2]   MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding [J].
Fu, Xinyu ;
Zhang, Jiani ;
Men, Ziqiao ;
King, Irwin .
WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, :2331-2341
[3]  
Ganin Y, 2015, PR MACH LEARN RES, V37, P1180
[4]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[5]  
Gretton A., 2007, P ADV NEUR INF PROC, V19, P513
[6]  
Gretton A, 2012, J MACH LEARN RES, V13, P723
[7]   Heterogeneous Graph Transformer [J].
Hu, Ziniu ;
Dong, Yuxiao ;
Wang, Kuansan ;
Sun, Yizhou .
WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, :2704-2710
[8]  
Ji M, 2010, LECT NOTES ARTIF INT, V6321, P570
[9]  
Jiang W, 2008, IEEE IMAGE PROC, P161, DOI 10.1109/ICIP.2008.4711716
[10]  
Kipf TN, 2016, ARXIV