Discrete Spectrum of the Periodic Schrodinger Operator with a Variable Metric Perturbed by a Nonnegative Potential

被引:8
作者
Birman, M. Sh. [1 ]
Sloushch, V. A. [1 ]
机构
[1] St Petersburg State Univ, Dept Phys, St Petersburg 198504, Russia
关键词
periodic Schrodinger operator; discrete spectrum; spectral gaps; asymptotics in the large coupling constant limit;
D O I
10.1051/mmnp/20105402
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study discrete spectrum in spectral gaps of an elliptic periodic second order differential operator in L-2(R-d) perturbed by a decaying potential. It is assumed that a perturbation is nonnegative and has a power-like behavior at infinity. We find asymptotics in the large coupling constant limit for the number of eigenvalues of the perturbed operator that have crossed a given point inside the gap or the edge of the gap. The corresponding asymptotics is power-like and depends on the observation point.
引用
收藏
页码:32 / 53
页数:22
相关论文
共 15 条
[1]   EIGENVALUE BRANCHES OF THE SCHRODINGER OPERATOR H-LAMBDA-W IN A GAP OF SIGMA(H) [J].
ALAMA, S ;
DEIFT, PA ;
HEMPEL, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 121 (02) :291-321
[2]  
Birman M., 1991, Adv. Sov. Math., V7, P57
[3]  
Birman M. S., 1977, VESTNIK LENINGRAD U, V7, P13
[4]  
Birman M. S, 1995, MATH TOP, P334
[5]  
Birman M.S., 1977, Russ. Math. Surv., V32, P15, DOI 10.1070/RM1977v032n01ABEH001592
[6]  
Birman M.S., 1987, Spectral theory of self-adjoint operators in Hilbert space
[7]  
Birman M.Sh., 1984, J SOV MATH, V27, P2442
[8]  
Birman M. Sh., 1990, Oper. Theory Adv. Appl., V46, P3
[9]  
Birman M.Sh., 1991, Adv. Soviet Math., V7, P85
[10]  
BIRMAN MS, 1996, ST PETERSB MATH J, V8, P1