Gradient hierarchical grain structures of Al0.1CoCrFeNi high-entropy alloys through dynamic torsion

被引:32
作者
Chen, G. [1 ]
Li, L. T. [1 ]
Qiao, J. W. [2 ]
Jiao, Z. M. [1 ]
Ma, S. G. [1 ]
Ng, Fern Lan [3 ]
Zhu, Z. G. [3 ]
Zhao, D. [1 ]
Wang, Z. H. [1 ]
机构
[1] Taiyuan Univ Technol, Coll Mech & Vehicle Engn, Inst Appl Mech, Taiyuan 030024, Shanxi, Peoples R China
[2] Taiyuan Univ Technol, Coll Mat Sci & Engn, Taiyuan 030024, Shanxi, Peoples R China
[3] Singapore Inst Mfg Technol, 73 Nan Yang Dr, Singapore 637662, Singapore
基金
中国国家自然科学基金;
关键词
High-entropy alloys; Dynamic torsion; Microstructure; Indentation and hardness;
D O I
10.1016/j.matlet.2018.11.176
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Al0.1CoCrFeNi high-entropy alloys are firstly processed by cyclic dynamic torsion (DT) using Split- Hopkinson Torsional Bar. Gradient hierarchical microstructures produced by DT are investigated using electron backscattered diffraction, transmission electron microscopy, and nanoindentation tests. Based on the gradient torsional strain, significant grain refinement, remarkable work hardening, and hierarchical deformation substructures are introduced into the current DT-HEAs. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:163 / 166
页数:4
相关论文
共 13 条
[1]   Shear and multiaxial responses of oxygen free high conductivity (OFHC) copper over wide range of strain-rates and temperatures and constitutive modeling [J].
Baig, Muneer ;
Khan, Akhtar S. ;
Choi, Shi-Hoon ;
Jeong, Aran .
INTERNATIONAL JOURNAL OF PLASTICITY, 2013, 40 :65-80
[2]   Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels [J].
Bouaziz, O. ;
Allain, S. ;
Scott, C. .
SCRIPTA MATERIALIA, 2008, 58 (06) :484-487
[3]   Microbanding mechanism in an Fe-Mn-C high-Mn twinning-induced plasticity steel [J].
Gutierrez-Urrutia, I. ;
Raabe, D. .
SCRIPTA MATERIALIA, 2013, 69 (01) :53-56
[4]   A critical review of high entropy alloys and related concepts [J].
Miracle, D. B. ;
Senkov, O. N. .
ACTA MATERIALIA, 2017, 122 :448-511
[5]   The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J].
Otto, F. ;
Dlouhy, A. ;
Somsen, Ch. ;
Bei, H. ;
Eggeler, G. ;
George, E. P. .
ACTA MATERIALIA, 2013, 61 (15) :5743-5755
[6]  
PETCH NJ, 1953, J IRON STEEL I, V174, P25
[7]   Mechanical response and deformation behavior of Al0.6CoCrFeNi high-entropy alloys upon dynamic loading [J].
Wang, L. ;
Qiao, J. W. ;
Ma, S. G. ;
Jiao, Z. M. ;
Zhang, T. W. ;
Chen, G. ;
Zhao, D. ;
Zhang, Y. ;
Wang, Z. H. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 727 :208-213
[8]   Evading the strength- ductility trade-off dilemma in steel through gradient hierarchical nanotwins [J].
Wei, Yujie ;
Li, Yongqiang ;
Zhu, Lianchun ;
Liu, Yao ;
Lei, Xianqi ;
Wang, Gang ;
Wu, Yanxin ;
Mi, Zhenli ;
Liu, Jiabin ;
Wang, Hongtao ;
Gao, Huajian .
NATURE COMMUNICATIONS, 2014, 5
[9]   Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel [J].
Welsch, E. ;
Ponge, D. ;
Haghighat, S. M. Hafez ;
Sandloebes, S. ;
Choi, P. ;
Herbig, M. ;
Zaefferer, S. ;
Raabe, D. .
ACTA MATERIALIA, 2016, 116 :188-199
[10]   Grain-boundary strengthening in nanocrystalline chromium and the Hall-Petch coefficient of body-centered cubic metals [J].
Wu, D. ;
Zhang, Junyan ;
Huang, J. C. ;
Bei, H. ;
Nieh, T. G. .
SCRIPTA MATERIALIA, 2013, 68 (02) :118-121