Smooth-Threshold GEE Variable Selection in High-Dimensional Partially Linear Models with Longitudinal Data

被引:3
作者
Tian, Ruiqin [1 ,2 ]
Xue, Liugen [1 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
[2] Zhejiang Agr & Forestry Univ, Dept Stat, Hangzhou, Zhejiang, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Generalized estimating equations; Longitudinal data; Partially linear models; Variable selection; NONCONCAVE PENALIZED LIKELIHOOD; DIVERGING NUMBER; SEMIPARAMETRIC REGRESSION; BINARY DATA; SHRINKAGE; BIAS;
D O I
10.1080/03610918.2013.824589
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of variable selection in high-dimensional partially linear models with longitudinal data. A variable selection procedure is proposed based on the smooth-threshold generalized estimating equation (SGEE). The proposed procedure automatically eliminates inactive predictors by setting the corresponding parameters to be zero, and simultaneously estimates the nonzero regression coefficients by solving the SGEE. We establish the asymptotic properties in a high-dimensional framework where the number of covariates p(n) increases as the number of clusters n increases. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed variable selection procedure.
引用
收藏
页码:1720 / 1734
页数:15
相关论文
共 26 条
[1]   On eliminating the asymptotic bias in the quasi-least squares estimate of the correlation parameter [J].
Chaganty, NR ;
Shults, J .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1999, 76 (1-2) :145-161
[2]  
Dziak JJ, 2006, THESIS PENNSYLVANIA
[3]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499
[4]   New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis [J].
Fan, JQ ;
Li, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (467) :710-723
[5]   Nonconcave penalized likelihood with a diverging number of parameters [J].
Fan, JQ ;
Peng, H .
ANNALS OF STATISTICS, 2004, 32 (03) :928-961
[6]   Variable selection via nonconcave penalized likelihood and its oracle properties [J].
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1348-1360
[7]   A STATISTICAL VIEW OF SOME CHEMOMETRICS REGRESSION TOOLS [J].
FRANK, IE ;
FRIEDMAN, JH .
TECHNOMETRICS, 1993, 35 (02) :109-135
[8]   Bias-corrected GEE estimation and smooth-threshold GEE variable selection for single-index models with clustered data [J].
Lai, Peng ;
Wang, Qihua ;
Lian, Heng .
JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 105 (01) :422-432
[9]  
Leng C., 2010, BIOMETRIKA, V97, P905
[10]  
Li GR, 2011, STAT SINICA, V21, P391