Multi-sensor fusion of data for monitoring of Huangtupo landslide in the three Gorges Reservoir (China)

被引:11
作者
Liu, Junqi [1 ]
Tang, Huiming [1 ]
Li, Qi [2 ]
Su, Aijun [1 ]
Liu, Qianhui [3 ]
Zhong, Cheng [1 ]
机构
[1] China Univ Geosci, Three Gorges Res Ctr Geohazard, Minist Educ, Wuhan, Hubei, Peoples R China
[2] Chinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan, Hubei, Peoples R China
[3] Peking Univ, Dept Informat Management, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Landslide monitoring; Big Data; mathematical statistics; neural network; data fusion; the Three Gorges Reservoir; SUSCEPTIBILITY; REGRESSION;
D O I
10.1080/19475705.2018.1478892
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
There hides a certain relationship among various monitoring data in a landslide, and the mining of this relationship is of significance to landslide research. In this paper, we first collect multiple monitoring data of riverside 1# slump-mass of Huangtupo landslide, the Three Gorges Reservoir Region, China, including Global Positioning System (GPS) monitoring data, inclinometer data, reservoir water level, rainfall, water content, crack width, ground-water level and temperature data, etc. By adopting the combination of quantitative statistics and qualitative simulation method for multi-sensor fusion monitoring data analysis, we overcome the one-sidedness of using a single method or single data type. The result of fusion analysis has indicated that in time periods with low rainfall or when the rainfall is not the major factor, main factors affecting landslide movement are crack development, water content of the landslide and water level of the Three Gorges Reservoir. Compared with the actual monitoring data, the fusion analysis results has a maximum error of 1.9%, which shows a good effect.
引用
收藏
页码:881 / 891
页数:11
相关论文
共 16 条
[1]   Regional landslide-hazard assessment for Seattle, Washington, USA [J].
Baum, RL ;
Coe, JA ;
Godt, JW ;
Harp, EL ;
Reid, ME ;
Savage, WZ ;
Schulz, WH ;
Brien, DL ;
Chleborad, AF ;
McKenna, JP ;
Michael, JA .
LANDSLIDES, 2005, 2 (04) :266-279
[2]   Evolutionary polynomial regression to alert rainfall-triggered landslide reactivation [J].
Doglioni, Angelo ;
Fiorillo, Francesco ;
Guadagno, Francesco ;
Simeone, Vincenzo .
LANDSLIDES, 2012, 9 (01) :53-62
[3]   Forecasting of landslide disasters based on bionics algorithm (Part 1: Critical slip surface searching) [J].
Gao, Wei .
COMPUTERS AND GEOTECHNICS, 2014, 61 :370-377
[4]   Estimating the quality of landslide susceptibility models [J].
Guzzetti, Fausto ;
Reichenbach, Paola ;
Ardizzone, Francesca ;
Cardinali, Mauro ;
Galli, Mirco .
GEOMORPHOLOGY, 2006, 81 (1-2) :166-184
[5]   A landslide forecasting model using ground based SAR data: The Portalet case study [J].
Herrera, G. ;
Fernandez-Merodo, J. A. ;
Mulas, J. ;
Pastor, M. ;
Luzi, G. ;
Monserrat, O. .
ENGINEERING GEOLOGY, 2009, 105 (3-4) :220-230
[6]   Design and implementation of a landslide early warning system [J].
Intrieri, Emanuele ;
Gigli, Giovanni ;
Mugnai, Francesco ;
Fanti, Riccardo ;
Casagli, Nicola .
ENGINEERING GEOLOGY, 2012, 147 :124-136
[7]  
[兰恒星 Lan Hengxing], 2002, [山地学报, Journal of mountain science], V20, P732
[8]   Multiple neural networks switched prediction for landslide displacement [J].
Lian, Cheng ;
Zeng, Zhigang ;
Yao, Wei ;
Tang, Huiming .
ENGINEERING GEOLOGY, 2015, 186 :91-99
[9]   Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messina (Sicily, southern Italy) [J].
Lombardo, L. ;
Cama, M. ;
Conoscenti, C. ;
Maerker, M. ;
Rotigliano, E. .
NATURAL HAZARDS, 2015, 79 (03) :1621-1648
[10]   Rainfall thresholds for the possible landslide occurrence in Sicily (Southern Italy) based on the automatic reconstruction of rainfall events [J].
Melillo, Massimo ;
Brunetti, Maria Teresa ;
Peruccacci, Silvia ;
Gariano, Stefano Luigi ;
Guzzetti, Fausto .
LANDSLIDES, 2016, 13 (01) :165-172