共 50 条
Enhanced visible light photocatalytic degradation of organic pollutants by iron doped titania nanotubes synthesized via facile one-pot hydrothermal
被引:16
|作者:
Subramaniam, M. N.
[1
]
Goh, P. S.
[1
]
Lau, W. J.
[1
]
Ismail, A. F.
[1
]
Karaman, M.
[2
]
机构:
[1] Univ Teknol Malaysia, Fac Chem & Energy Engn, Adv Membrane Technol Res Ctr, Skudai 81310, Johor, Malaysia
[2] Konya Tech Univ, Dept Chem Engn, TR-42031 Konya, Turkey
关键词:
Photocatalyst;
Titania nanotubes;
Iron doping;
Visible-light photocatalysis;
Dye;
METHYLENE-BLUE DYE;
TIO2;
NANOPARTICLES;
COMPOSITES;
PHOTODEGRADATION;
MINERALIZATION;
REMOVAL;
COBALT;
ACID;
CO;
D O I:
10.1016/j.powtec.2020.02.052
中图分类号:
TQ [化学工业];
学科分类号:
0817 ;
摘要:
The photoactivity of iron doped titania nanotubes (Fe-TNT) synthesized via facile hydrothermal technique was investigated using reactive black 5 (RB 5) as the model pollutant. The incorporation of iron (Fe) nanoparticles in titania nanotubes (TNT) structure was confirmed via x-ray diffraction while x-ray photoelectron spectroscopy analysis showed the presence of Fe3+ ions in the nanotube structure. Ultraviolet-visible spectrophotometer analysis confirmed the reduction in band gap energy, from 3.595 eV to 2.097 eV due to the interaction between Fe into TNT structure. The formation of tubular structure has also increased the specific surface area of the photocatalyst from 56.00 m(2)/g to between 246.23 m(2)/g to 142.01 m(2)/g for all Fe-TNT. Fe-TNT with Fe:Ti ratio of 1:3 demonstrated promising photodegradation efficiency of 90% within 120 min of visible light irradiation. The reduced band gap energy and improved visible light responsiveness imparted by incorporation of Fe nanoparticles into structure of TNT are the main factors for improved photocatalytic degradation. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:96 / 106
页数:11
相关论文