A Result on Linear Arboricity of Planar Graphs

被引:0
作者
Luo, Zhaoyang [1 ,2 ]
机构
[1] Changji Univ, Dept Math, Changji 831100, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Planar graph; Linear arboricity; Cycle; MAXIMUM DEGREE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. In this paper, it is proved that if G is a planar graph with maximum degree Delta >= 7 and every 7-cycle of G contains at most two chords, then la(G) = left perpendiuclar Delta(G)/2 right perpendicular.
引用
收藏
页码:403 / 412
页数:10
相关论文
共 20 条
  • [1] Akiyama J., 1980, Mathematica Slovaca, V30, P405
  • [2] Bondy J. A., 1976, Graph theory with applications
  • [3] The linear arboricity of planar graphs with maximum degree at least 5
    Chen, Hong-Yu
    Qi, Jian-Ming
    [J]. INFORMATION PROCESSING LETTERS, 2012, 112 (20) : 767 - 771
  • [4] The Linear Arboricity of Planar Graphs without 5-, 6-Cycles with Chords
    Chen, Hongyu
    Tan, Xiang
    Wu, Jianliang
    Li, Guojun
    [J]. GRAPHS AND COMBINATORICS, 2013, 29 (03) : 373 - 385
  • [5] A Planar linear arboricity conjecture
    Cygan, Marek
    Hou, Jian-Feng
    Kowalik, Lukasz
    Luzar, Borut
    Wu, Jian-Liang
    [J]. JOURNAL OF GRAPH THEORY, 2012, 69 (04) : 403 - 425
  • [6] THE LINEAR ARBORICITY OF SOME REGULAR GRAPHS
    ENOMOTO, H
    PEROCHE, B
    [J]. JOURNAL OF GRAPH THEORY, 1984, 8 (02) : 309 - 324
  • [7] SOME RESULTS ON LINEAR ARBORICITY
    GULDAN, F
    [J]. JOURNAL OF GRAPH THEORY, 1986, 10 (04) : 505 - 509
  • [8] Gulden F., 1986, Mathematica Slovaca, V36, P225
  • [9] COVERING AND PACKING IN GRAPHS, .1.
    HARARY, F
    [J]. ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1970, 175 (01) : 198 - &
  • [10] Jianliang Wu, 2002, Journal of Systems Science and Complexity, V15, P372