On the Chaplygin Sphere in a Magnetic Field

被引:2
作者
Borisov, Alexey V. [1 ]
Tsiganov, Andrey V. [2 ]
机构
[1] Udmurt State Univ, Ul Univ Skaya 1, Izhevsk 426034, Russia
[2] Russian Acad Sci, Steklov Math Inst, Ul Gubkina 8, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
nonholonomic mechanics; magnetic field; deformation of Poisson brackets; Grioli problem; Barnett - London moment; MOTION; VARIABLES; SYSTEMS; BODY; BALL; TOP;
D O I
10.1134/S156035471906011X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the possibility of using Dirac's ideas of the deformation of Poisson brackets in nonholonomic mechanics. As an example, we analyze the composition of external forces that do no work and reaction forces of nonintegrable constraints in the model of a nonholonomic Chaplygin sphere on a plane. We prove that, when a solenoidal field is applied, the general mechanical energy, the invariant measure and the conformally Hamiltonian representation of the equations of motion are preserved. In addition, we consider the case of motion of the nonholonomic Chaplygin sphere in a constant magnetic field taking dielectric and ferromagnetic (superconducting) properties of the sphere into account. As a by-product we also obtain two new integrable cases of the Hamiltonian rigid body dynamics in a constant magnetic field taking the magnetization by rotation effect into account.
引用
收藏
页码:739 / 754
页数:16
相关论文
共 50 条
  • [31] Instability and transition of a vertical ascension or fall of a free sphere affected by a vertical magnetic field
    Pan, Jun-Hua
    Zhang, Nian-Mei
    Ni, Ming-Jiu
    JOURNAL OF FLUID MECHANICS, 2019, 859 : 33 - 48
  • [32] Distance between a Vertical Solid Wall and a Falling Insulating Sphere in a Conductive Liquid under the Imposition of a Horizontal Static Magnetic Field
    Iwai, Kazuhiko
    Kumazawa, Keisuke
    Furuhashi, Ippei
    ISIJ INTERNATIONAL, 2011, 51 (11) : 1825 - 1830
  • [33] Generalized Chaplygin's transformation and explicit integration of a system with a spherical support
    Borisov, Alexey V.
    Kilin, Alexander A.
    Mamaev, Ivan S.
    REGULAR & CHAOTIC DYNAMICS, 2012, 17 (02) : 170 - 190
  • [34] Effect of Magnetic Field and Initial Stress on Radial Vibrations in Rotating Orthotropic Homogeneous Hollow Sphere
    Mahmoud, S. R.
    Tounsi, Abdelouahed
    Marin, M.
    Ali, S. I.
    Ali, A. T.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2014, 11 (06) : 1524 - 1529
  • [35] Couple stress fluid flow enclosing a solid sphere in a porous medium: Effect of magnetic field
    Maurya, Pankaj Kumar
    Deo, Satya
    Maurya, Deepak Kumar
    PHYSICS OF FLUIDS, 2023, 35 (07)
  • [36] Regular and Chaotic Dynamics of a Chaplygin Sleigh due to Periodic Switch of the Nonholonomic Constraint
    Kuznetsov, Sergey P.
    REGULAR & CHAOTIC DYNAMICS, 2018, 23 (02) : 178 - 192
  • [37] Self-similar solution of the unsteady flow in the stagnation point region of a rotating sphere with a magnetic field
    H. S. Takhar
    G. Nath
    Heat and Mass Transfer, 2000, 36 : 89 - 96
  • [38] Magnetic curves on tangent sphere bundles
    Inoguchi, Jun-ichi
    Munteanu, Marian Ioan
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (03) : 2087 - 2112
  • [39] Magnetic curves on tangent sphere bundles
    Jun-ichi Inoguchi
    Marian Ioan Munteanu
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 2087 - 2112
  • [40] The behavior of magnetic microbubble in acoustic-magnetic field
    Chen, Jie
    Zhao, Lixia
    Wang, Chenghui
    Mo, Runyang
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2021, 538