Post-anoxic denitrification driven by PHA and glycogen within enhanced biological phosphorus removal

被引:85
作者
Coats, Erik R. [1 ]
Mockos, Alexander [1 ]
Loge, Frank J. [2 ]
机构
[1] Univ Idaho, Dept Civil Engn, Moscow, ID 83844 USA
[2] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
Enhanced biological phosphorus removal; Post-anoxic denitrification; Glycogen; Polyhydroxyalkanoate; ACTIVATED-SLUDGE; ACCUMULATING ORGANISMS; ACETATE UPTAKE; ANAEROBIC CONDITIONS; PHOSPHATE REMOVAL; METABOLISM; MODEL; STOICHIOMETRY; NITRIFICATION; STARVATION;
D O I
10.1016/j.biortech.2010.09.104
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The objective of this research was to interrogate and develop a better understanding for a process to achieve post-anoxic denitrification without exogenous carbon augmentation within enhanced biological phosphorus removal (EBPR). Sequencing batch reactors fed real wastewater and seeded with mixed microbial consortia were operated under variable anaerobic aerobic anoxic and organic carbon loading conditions. The process consistently achieved phosphorus and nitrogen removal, while the observed specific denitrification rates were markedly higher than expected for post-anoxic systems operated without exogenous organic carbon addition. Investigations revealed that post-anoxic denitrification was predominantly driven by glycogen, an intracellular carbon storage polymer associated with EBPR; moreover, glycogen reserves can be significantly depleted post-anoxically without compromising EBPR. Success of the proposed process is predicated on providing sufficient organic acids in the influent wastewater, such that residual nitrate carried over from the post-anoxic period is reduced and polyhydroxyalkanoate (PHA) synthesis occurs. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1019 / 1027
页数:9
相关论文
共 35 条
[1]   BIOLOGICAL MECHANISM OF ACETATE UPTAKE MEDIATED BY CARBOHYDRATE CONSUMPTION IN EXCESS PHOSPHORUS REMOVAL SYSTEMS [J].
ARUN, V ;
MINO, T ;
MATSUO, T .
WATER RESEARCH, 1988, 22 (05) :565-570
[2]  
BARNARD JL, 1998, WEFTEC
[3]   RAPID GAS-CHROMATOGRAPHIC METHOD FOR DETERMINATION OF POLY-BETA-HYDROXYBUTYRIC ACID IN MICROBIAL BIOMASS [J].
BRAUNEGG, G ;
SONNLEITNER, B ;
LAFFERTY, RM .
EUROPEAN JOURNAL OF APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1978, 6 (01) :29-37
[4]   Impact of excessive aeration on biological phosphorus removal from wastewater [J].
Brdjanovic, D ;
Slamet, A ;
van Loosdrecht, MCM ;
Hooijmans, CM ;
Alaerts, GJ ;
Heijnen, JJ .
WATER RESEARCH, 1998, 32 (01) :200-208
[5]   Denitrifying phosphorus removal: Linking the process performance with the microbial community structure [J].
Carvalho, Gilda ;
Lemos, Paulo C. ;
Oehmen, Adrian ;
Reis, Maria A. M. .
WATER RESEARCH, 2007, 41 (19) :4383-4396
[6]  
Clesceri L, 1998, STANDARD METHODS EXA
[7]   Stoichiometry and kinetics of acetate uptake under anaerobic conditions by an enriched culture of phosphorus-accumulating organisms at different pHs [J].
Filipe, CDM ;
Daigger, GT ;
Grady, CPL .
BIOTECHNOLOGY AND BIOENGINEERING, 2001, 76 (01) :32-43
[8]   A metabolic model for acetate uptake under anaerobic conditions by glycogen accumulating organisms: Stoichiometry, kinetics, and the effect of pH [J].
Filipe, CDM ;
Daigger, GT ;
Grady, CPL .
BIOTECHNOLOGY AND BIOENGINEERING, 2001, 76 (01) :17-31
[9]   Microbiological Basis of Phosphate Removal in the Activated Sludge Process for the Treatment of Wastewater [J].
Fuhs, G. W. ;
Chen, Min .
MICROBIAL ECOLOGY, 1975, 2 (02) :119-138
[10]  
Grady Jr CPL, 2011, Biological Wastewater Treatment, VThird