Dry Polymer Electrolyte Concepts for Solid-State Batteries

被引:11
作者
Popovic, Jelena [1 ]
机构
[1] Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany
关键词
ionic conductivity; lithium batteries; polymer electrolytes; solid-state batteries; transference numbers; IONIC-CONDUCTIVITY; TRANSPORT-PROPERTIES; TRANSFERENCE NUMBERS; LIQUID ELECTROLYTES; MOLECULAR-DYNAMICS; SALT CONCENTRATION; LITHIUM TRANSPORT; DENDRITE GROWTH; PHASE-BEHAVIOR; LI/PEO-LITFSI;
D O I
10.1002/macp.202100344
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Dry polymer electrolytes are a promising class of materials for future safer high-energy-density battery technologies. This review deals with the relevant physico-chemical properties of the dry polymer electrolytes, ionic transport mechanism, molecular structure, and interfacial issues in a widely investigated model system (poly(ethylene oxide) with lithium bis(trifluoromethanesulfonyl)imide). At the end of the review, latest macromolecular approaches for high-performance lithium battery applications are discussed.
引用
收藏
页数:11
相关论文
共 113 条
  • [91] Concentration and velocity profiles in a polymeric lithium-ion battery electrolyte
    Steinruck, Hans-Georg
    Takacs, Christopher J.
    Kim, Hong-Keun
    Mackanic, David G.
    Holladay, Benjamin
    Cao, Chuntian
    Narayanan, Suresh
    Dufresne, Eric M.
    Chushkin, Yuriy
    Ruta, Beatrice
    Zontone, Federico
    Will, Johannes
    Borodin, Oleg
    Sinha, Sunil K.
    Srinivasan, Venkat
    Toney, Michael F.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (11) : 4312 - 4321
  • [92] What Can We Learn from Ionic Conductivity Measurements in Polymer Electrolytes? A Case Study on Poly(ethylene oxide) (PEO)-NaI and PEO-LiTFSI
    Stolwijk, Nicolaas A.
    Wiencierz, Manfred
    Heddier, Christian
    Koesters, Johannes
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2012, 116 (10) : 3065 - 3074
  • [93] On the Importance of Li Metal Morphology on the Cycling of Lithium Metal Polymer Cells
    Storelli, Alexandre
    Rousselot, Steeve
    Alzate-Carvajal, Natalia
    Pele, Vincent
    Dolle, Mickael
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (04)
  • [94] Torell L.M., 1993, POLYM ADVAN TECHNOL, V4, P152
  • [95] In situ analytical techniques for battery interface analysis
    Tripathi, Alok M.
    Su, Wei-Nien
    Hwang, Bing Joe
    [J]. CHEMICAL SOCIETY REVIEWS, 2018, 47 (03) : 736 - 851
  • [96] LITHIUM IONIC-CONDUCTION IN POLY(METHACRYLIC ACID) POLY(ETHYLENE OXIDE) COMPLEX CONTAINING LITHIUM PERCHLORATE
    TSUCHIDA, E
    OHNO, H
    TSUNEMI, K
    KOBAYASHI, N
    [J]. SOLID STATE IONICS, 1983, 11 (03) : 227 - 233
  • [97] Electronic conductivity of polymer electrolytes: electronic charge transport properties of LiTFSI-doped PEO
    Unge, Mikael
    Gudla, Harish
    Zhang, Chao
    Brandell, Daniel
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (15) : 7680 - 7684
  • [98] In situ polymerization process: an essential design tool for lithium polymer batteries
    Vijayakumar, Vidyanand
    Anothumakkool, Bihag
    Kurungot, Sreekumar
    Winter, Martin
    Nair, Jijeesh Ravi
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (05) : 2708 - 2788
  • [99] ESTIMATION OF LI+ TRANSPORT NUMBER IN POLYMER ELECTROLYTES BY THE COMBINATION OF COMPLEX IMPEDANCE AND POTENTIOSTATIC POLARIZATION MEASUREMENTS
    WATANABE, M
    NAGANO, S
    SANUI, K
    OGATA, N
    [J]. SOLID STATE IONICS, 1988, 28 : 911 - 917
  • [100] Effect of Polymer Polarity on Ion Transport: A Competition between Ion Aggregation and Polymer Segmental Dynamics
    Wheatle, Bill K.
    Lynd, Nathaniel A.
    Ganesan, Venkat
    [J]. ACS MACRO LETTERS, 2018, 7 (10): : 1149 - 1154