Sensor validation and fusion for automated vehicle control using fuzzy techniques

被引:8
作者
Goebel, KF
Agogino, AM
机构
[1] GE, Corp Res & Dev, Informat Syst Lab, Niskayuna, NY 12309 USA
[2] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
来源
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME | 2001年 / 123卷 / 01期
关键词
sensor fusion; data fusion; sensor validation; fuzzy fusion; information fusion;
D O I
10.1115/1.1343909
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This brief introduces a fuzzy sensor validation and fusion methodology and applies it to automated vehicle central in Intelligent Vehicle Highway Systems (NHS). Sensor measurements are assigned confidence values through sensor-specific dynamic validation curves. The validation curves attain minima of zero at the boundaries of the validation gate. These in turn are determined by the largest physically possible change a system-in our example vehicles of the IVHS-can undergo in one time step, A fuzzy exponential weighted moving average time series predictor determines the location of the maximum value of the validation curves. Sensor fusion is then performed using a weighted average of sensor readings and confidence values, and-if available-the functionally redundant values calculated from other sensors.
引用
收藏
页码:145 / 146
页数:2
相关论文
共 6 条
  • [1] AGOGINO A, 1995, INTELLIGENT TRANSPOR, V1, P77
  • [2] Hybrid soft computing systems: Industrial and commercial applications
    Bonissone, PP
    Chen, YT
    Goebel, K
    Khedkar, PS
    [J]. PROCEEDINGS OF THE IEEE, 1999, 87 (09) : 1641 - 1667
  • [3] GOEBEL K, 1996, P 29 INT S AUT TECHN, P203
  • [4] GOEBEL K, 1999, P 2 INT C INF FUS FU, V1, P331
  • [5] KHEDKAR PS, 1992, P IEEE INT C FUZZ SY, P281
  • [6] SMART CARS ON SMART ROADS - PROBLEMS OF CONTROL
    VARAIYA, P
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (02) : 195 - 207