Wilson Loops in Ising Lattice Gauge Theory

被引:18
作者
Chatterjee, Sourav [1 ]
机构
[1] Stanford Univ, Dept Stat, Sequoia Hall,390 Serra Mall, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
PHASE; MONOPOLES; DUALITY; MODELS;
D O I
10.1007/s00220-020-03738-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Wilson loop expectation in 4D Z(2) lattice gauge theory is computed to leading order in the weak coupling regime. This is the first example of a rigorous theoretical calculation of Wilson loop expectation in the weak coupling regime of a 4D lattice gauge theory. All prior results are either inequalities or strong coupling expansions.
引用
收藏
页码:307 / 340
页数:34
相关论文
共 31 条
[1]   GAUGE FIELDS ON A LATTICE .3. STRONG-COUPLING EXPANSIONS AND TRANSITION POINTS [J].
BALIAN, R ;
DROUFFE, JM ;
ITZYKSON, C .
PHYSICAL REVIEW D, 1975, 11 (08) :2104-2119
[2]   SO(N) Lattice Gauge Theory, planar and beyond [J].
Basu, Riddhipratim ;
Ganguly, Shirshendu .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2018, 71 (10) :2016-2064
[4]   CONTINUUM-LIMIT OF A Z2 LATTICE GAUGE-THEORY [J].
BREZIN, E ;
DROUFFE, JM .
NUCLEAR PHYSICS B, 1982, 200 (01) :93-106
[5]  
Cao S, 2020, WILSON LOOP EXPECTAT
[6]  
Chatterjee S., 2016, ARXIV160404777
[7]  
Chatterjee S, 2018, PROBABILITY ANAL INT
[8]   Rigorous Solution of Strongly Coupled SO(N) Lattice Gauge Theory in the Large N Limit [J].
Chatterjee, Sourav .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 366 (01) :203-268
[9]   PRESCRIBING A SYSTEM OF RANDOM VARIABLES BY CONDITIONAL DISTRIBUTIONS [J].
DOBRUSHIN, RL .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1970, 15 (03) :458-+
[10]  
Dobrushin Roland Lvovich, 1968, FUNCT ANAL APPL, V2, P302, DOI DOI 10.1007/BF01075682