Transition Probabilities and Dynamic Structure Function in the ASEP Conditioned on Strong Flux

被引:60
作者
Popkov, V. [1 ,2 ,3 ]
Schuetz, G. M. [3 ,4 ]
机构
[1] Univ Salerno, Dipartimento Fis E R Caianiello, Fisciano, Italy
[2] Univ Salerno, Consorzio Nazl Interuniv Sci Fis Mat CNISM, Fisciano, Italy
[3] Univ Bonn, Interdisziplinares Zentrum Komplexe Syst, D-53119 Bonn, Germany
[4] Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany
关键词
Exclusion processes; Integrable spin chains; Exact results; Conditional probabilities; Dynamic structure function; Long-range interactions; Large deviations in nonequilibrium systems; EQUATION;
D O I
10.1007/s10955-011-0137-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the asymmetric simple exclusion processes (ASEP) on a ring constrained to produce an atypically large flux, or an extreme activity. Using quantum free fermion techniques we find the time-dependent conditional transition probabilities and the exact dynamical structure function under such conditioned dynamics. In the thermodynamic limit we obtain the explicit scaling form. This gives a direct proof that the dynamical exponent in the extreme current regime is z=1 rather than the KPZ exponent z=3/2 which characterizes the ASEP in the regime of typical currents. Some of our results extend to the activity in the partially asymmetric simple exclusion process, including the symmetric case.
引用
收藏
页码:627 / 639
页数:13
相关论文
共 17 条
[1]  
[Anonymous], 1999, STOCHASTIC INTERACTI
[2]   The totally asymmetric exclusion process on a ring: Exact relaxation dynamics and associated model of clustering transition [J].
Brankov, J. G. ;
Papoyan, Vl V. ;
Poghosyan, V. S. ;
Priezzhev, V. B. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 368 (02) :471-480
[3]   TEMPERATURE CORRELATION-FUNCTIONS IN THE XXO HEISENBERG CHAIN .1. [J].
COLOMO, F ;
IZERGIN, AG ;
KOREPIN, VE ;
TOGNETTI, V .
THEORETICAL AND MATHEMATICAL PHYSICS, 1993, 94 (01) :11-38
[4]   Universal large-deviation function of the Kardar-Parisi-Zhang equation in one dimension [J].
Derrida, B ;
Appert, C .
JOURNAL OF STATISTICAL PHYSICS, 1999, 94 (1-2) :1-30
[5]   Non-equilibrium steady states: fluctuations and large deviations of the density and of the current [J].
Derrida, Bernard .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
[6]   NORMALIZATION SUM FOR THE BETHE HYPOTHESIS WAVE-FUNCTIONS OF THE HEISENBERG-ISING CHAIN [J].
GAUDIN, M ;
MCCOY, BM ;
TAI, TW .
PHYSICAL REVIEW D, 1981, 23 (02) :417-419
[7]   Direct evaluation of large-deviation functions [J].
Giardinà, C ;
Kurchan, J ;
Peliti, L .
PHYSICAL REVIEW LETTERS, 2006, 96 (12) :1-4
[8]   2 SOLUBLE MODELS OF AN ANTIFERROMAGNETIC CHAIN [J].
LIEB, E ;
SCHULTZ, T ;
MATTIS, D .
ANNALS OF PHYSICS, 1961, 16 (03) :407-466
[9]   SOME EXACT CALCULATIONS ON A CHAIN OF SPINS 1-2 [J].
NIEMEIJER, T .
PHYSICA, 1967, 36 (03) :377-+
[10]   ASEP on a ring conditioned on enhanced flux [J].
Popkov, Vladislav ;
Schuetz, Gunter M. ;
Simon, Damien .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,