Strain localization and the onset of dynamic weakening in calcite fault gouge

被引:83
作者
Smith, S. A. F. [1 ]
Nielsen, S. [2 ]
Di Toro, G. [3 ,4 ]
机构
[1] Univ Otago, Dept Geol, Dunedin 9054, New Zealand
[2] Univ Durham, Dept Earth Sci, Rock Mech Lab, Durham, England
[3] INGV, I-00143 Rome, Italy
[4] Univ Padua, Dipartimento Geosci, I-35131 Padua, Italy
关键词
localization; calcite; gouge; dynamic weakening; earthquakes; experiments; SEISMIC SLIP; THERMAL-DECOMPOSITION; FRICTIONAL BEHAVIOR; INTERNAL STRUCTURE; SAN-ANDREAS; ZONES; LUBRICATION; SYSTEM; RECRYSTALLIZATION; MICROSTRUCTURES;
D O I
10.1016/j.epsl.2014.12.043
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
To determine the role of strain localization during dynamic weakening of calcite gouge at seismic slip rates, single-slide and slide-hold-slide experiments were conducted on 2-3-mm thick layers of calcite gouge at normal stresses up to 26 MPa and slip rates up to 1 m s(-1). Microstructures were analyzed from short displacement (<35 cm) experiments stopped prior to and during the transition to dynamic weakening. In fresh calcite gouge layers, dynamic weakening occurs after a prolonged strengthening phase that becomes shorter with increasing normal stress and decreasing layer thickness. Strain is initially distributed across the full thickness of the gouge layer, but within a few millimeters displacement the strain becomes localized to a boundary-parallel, high-strain shear band c. 20 mu m wide. During the strengthening phase, which lasts between 3 and 30 cm under the investigated conditions, the shear band broadens to become c. 100 mu m wide at peak stress. The transition to dynamic weakening in calcite gouges is associated with the nucleation of micro-slip surfaces dispersed throughout the c. 100 mu m wide shear band. Each slip surface is surrounded by aggregates of extremely fine grained and tightly packed calcite, interpreted to result from grain welding driven by local frictional heating in the shear band. By the end of dynamic weakening strain is localized to a single 2-3-mu m wide principal slip surface, flanked by layers of recrystallized gouge. Calcite gouge layers re-sheared following a hold period weaken nearly instantaneously, much like solid cylinders of calcite marble deformed under the same experimental conditions. This is due to reactivation of the recrystallized and cohesive principal slip surface that formed during the first slide, reducing the effective gouge layer thickness to a few microns. Our results suggest that formation of a high-strain shear band is a critical precursor to dynamic weakening in calcite gouges. Microstructures are most compatible with dynamic weakening resulting from a thermally triggered mechanism such as flash heating that requires both a high degree of strain localization and a minimum slip velocity to activate. The delayed onset of dynamic weakening in fresh calcite gouge layers, particularly at low normal stresses, may inhibit large coseismic slip at shallow crustal levels in calcite-bearing fault zones. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:25 / 36
页数:12
相关论文
共 63 条
[1]  
[Anonymous], 2006, J GEOPHYS RES SOLID
[2]   The role of recrystallisation on the deformation behaviour of calcite rocks: large strain torsion experiments on Carrara marble [J].
Barnhoorn, A ;
Bystricky, M ;
Burlini, L ;
Kunze, K .
JOURNAL OF STRUCTURAL GEOLOGY, 2004, 26 (05) :885-903
[3]   Constitutive relationships and physical basis of fault strength due to flash heating [J].
Beeler, N. M. ;
Tullis, T. E. ;
Goldsby, D. L. .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2008, 113 (B1)
[4]   Frictional behavior of large displacement experimental faults [J].
Beeler, NM ;
Tullis, TE ;
Blanpied, ML ;
Weeks, JD .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1996, 101 (B4) :8697-8715
[5]   Microscale anatomy of the 1999 Chi-Chi earthquake fault zone [J].
Boullier, Anne-Marie ;
Yeh, En-Chao ;
Boutareaud, Sebastien ;
Song, Sheng-Rong ;
Tsai, Chin-Ho .
GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2009, 10
[6]   Fast slip with inhibited temperature rise due to mineral dehydration: Evidence from experiments on gypsum [J].
Brantut, Nicolas ;
Han, Raehee ;
Shimamoto, Toshihiko ;
Findling, Nathaniel ;
Schubnel, Alexandre .
GEOLOGY, 2011, 39 (01) :59-62
[7]  
BURKHARD M, 1990, GEOL SOC SPEC PUBL, V54, P241, DOI 10.1144/GSL.SP.1990.054.01.23
[8]   Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California [J].
Chester, FM ;
Chester, JS .
TECTONOPHYSICS, 1998, 295 (1-2) :199-221
[9]   Fault zone architecture and deformation processes within evaporitic rocks in the upper crust [J].
De Paola, N. ;
Collettini, C. ;
Faulkner, D. R. ;
Trippetta, F. .
TECTONICS, 2008, 27 (04)
[10]   Fault lubrication and earthquake propagation in thermally unstable rocks [J].
De Paola, Nicola ;
Hirose, Takehiro ;
Mitchell, Tom ;
Di Toro, Giulio ;
Viti, Cecilia ;
Shimamoto, Toshihiko .
GEOLOGY, 2011, 39 (01) :35-38