Recent Progress in Interfacial Nanoarchitectonics in Solid-State Batteries

被引:67
作者
Takada, Kazunori [1 ]
Ohta, Narumi [1 ]
Tateyama, Yoshitaka [1 ]
机构
[1] Natl Inst Mat Sci, Tsukuba, Ibaraki, Japan
关键词
Solid-state lithium battery; Interface; Nanoionics; Space-charge layer; Sulfide electrolyte; LITHIUM-ION; CATHODE MATERIALS; TANTALUM OXIDE; CONDUCTIVITY; ELECTROLYTE; DENSIFICATION; PERFORMANCE; CERAMICS; GLASS;
D O I
10.1007/s10904-014-0127-8
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Employing solid electrolytes in lithium-ion batteries is anticipated to be a solution to some issues originated from their organic electrolytes. However, solid-state lithium batteries had not been practicable, because ionic conductivities of lithium-ion conductive solid electrolytes had been very low. Therefore, many studies aiming at the development of solid-state lithium batteries have been focused on enhancement of ionic transport in solids. They have succeeded in enhancing the conductivity to be comparable to or even higher than that of liquids. At this stage, rate-determining step of the battery reactions is sometimes ionic transport at interface rather than bulk in the battery components. Since anomalous ionic conduction at the interface takes place in space-charge layers with ca. 10 nm in thickness, it will be controlled by "nanoarchitectonics". This paper reviews some interfacial nanoarchitectures that control the interfacial ionic conduction to enhance the performance of solid-state lithium batteries.
引用
收藏
页码:205 / 213
页数:9
相关论文
共 50 条
[1]   On the structure of Li3Ti2(PO4)3 [J].
Aatiq, A ;
Ménétrier, M ;
Croguennec, L ;
Suard, E ;
Delmas, C .
JOURNAL OF MATERIALS CHEMISTRY, 2002, 12 (10) :2971-2978
[2]   IONIC-CONDUCTIVITY IN LI3N SINGLE-CRYSTALS [J].
ALPEN, UV ;
RABENAU, A ;
TALAT, GH .
APPLIED PHYSICS LETTERS, 1977, 30 (12) :621-623
[3]   IONIC-CONDUCTIVITY OF SOLID ELECTROLYTES BASED ON LITHIUM TITANIUM PHOSPHATE [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (04) :1023-1027
[4]   Bioinspired nanoarchitectonics as emerging drug delivery systems [J].
Ariga, Katsuhiko ;
Kawakami, Kohsaku ;
Ebara, Mitsuhiro ;
Kotsuchibashi, Yohei ;
Ji, Qingmin ;
Hill, Jonathan P. .
NEW JOURNAL OF CHEMISTRY, 2014, 38 (11) :5149-5163
[5]   Layer-by-layer Nanoarchitectonics: Invention, Innovation, and Evolution [J].
Ariga, Katsuhiko ;
Yamauchi, Yusuke ;
Rydzek, Gaulthier ;
Ji, Qingmin ;
Yonamine, Yusuke ;
Wu, Kevin C. -W. ;
Hill, Jonathan P. .
CHEMISTRY LETTERS, 2014, 43 (01) :36-68
[6]   FAST IONIC-CONDUCTIVITY IN LITHIUM NITRIDE [J].
BOUKAMP, BA ;
HUGGINS, RA .
MATERIALS RESEARCH BULLETIN, 1978, 13 (01) :23-32
[7]   High performance silicon-based anodes in solid-state lithium batteries [J].
Cervera, Rinlee B. ;
Suzuki, Naoki ;
Ohnishi, Tsuyoshi ;
Osada, Minoru ;
Mitsuishi, Kazutaka ;
Kambara, Takayoshi ;
Takada, Kazunori .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (02) :662-666
[8]   Segregation Tendency in Layered Aluminum-Substituted Lithium Nickel Oxides [J].
Croguennec, L. ;
Shao-Horn, Y. ;
Gloter, A. ;
Colliex, C. ;
Guilmard, M. ;
Fauth, F. ;
Delmas, C. .
CHEMISTRY OF MATERIALS, 2009, 21 (06) :1051-1059
[9]   Colloidal unilamellar layers of tantalum oxide with open channels [J].
Fukuda, Katsutoshi ;
Nakai, Izumi ;
Ebina, Yasuo ;
Ma, Renzhi ;
Sasaki, Takayoshi .
INORGANIC CHEMISTRY, 2007, 46 (12) :4787-4789
[10]   Space-Charge Layer Effect at Interface between Oxide Cathode and Sulfide Electrolyte in All-Solid-State Lithium-Ion Battery [J].
Haruyama, Jun ;
Sodeyama, Keitaro ;
Han, Liyuan ;
Takada, Kazunori ;
Tateyama, Yoshitaka .
CHEMISTRY OF MATERIALS, 2014, 26 (14) :4248-4255