Marginally stable thermal equilibria of Rayleigh-Benard convection

被引:7
作者
O'Connor, Liam [1 ]
Lecoanet, Daniel [1 ,2 ]
Anders, Evan H. [2 ]
机构
[1] Northwestern Univ, Dept Engn Sci & Appl Math, Evanston, IL 60208 USA
[2] Northwestern Univ, Ctr Interdisciplinary Explorat & Res Astrophys, Evanston, IL 60201 USA
关键词
TURBULENCE; LAYER;
D O I
10.1103/PhysRevFluids.6.093501
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Natural convection exhibits turbulent flows which are difficult or impossible to resolve in direct numerical simulations. In this work we investigate a quasilinear form of the Rayleigh-Benard problem which describes the bulk one-dimensional properties of convection without resolving the turbulent dynamics. We represent perturbations away from the mean using a sum of marginally stable eigenmodes. By constraining the perturbation amplitudes, the marginal stability criterion allows us to evolve the background temperature profile under the influence of multiple eigenmodes representing flows at different length scales. We find the quasilinear system evolves to an equilibrium state where advective and diffusive fluxes sum to a constant. These marginally stable thermal equilibria (MSTE) are exact solutions of the quasilinear equations. The mean MSTE temperature profiles have thinner boundary layers and larger Nusselt numbers than thermally equilibrated two- and three-dimensional simulations of the full nonlinear equations. MSTE solutions exhibit a classic boundary-layer scaling of the Nusselt number Nu with the Rayleigh number Ra of Nu similar to Ra-1/3. When MSTE are used as initial conditions for a two-dimensional simulation, we find that Nu quickly equilibrates without the burst of turbulence often induced by purely conductive initial conditions, but we also find that the kinetic energy is too large and viscously attenuates on a long, viscous timescale.
引用
收藏
页数:19
相关论文
共 50 条
[31]   Rayleigh-Benard convection with phase changes in a Galerkin model [J].
Weidauer, Thomas ;
Pauluis, Olivier ;
Schumacher, Joerg .
PHYSICAL REVIEW E, 2011, 84 (04)
[32]   Axisymmetric thermal-lattice Boltzmann method for Rayleigh-Benard convection with anisotropic thermal diffusion [J].
Gawas, Amitkumar S. ;
Patil, Dhiraj, V .
JOURNAL OF COMPUTATIONAL SCIENCE, 2020, 45
[33]   Wall modes and the transition to bulk convection in rotating Rayleigh-Benard convection [J].
Zhang, Xuan ;
Reiter, Philipp ;
Shishkina, Olga ;
Ecke, Robert E. .
PHYSICAL REVIEW FLUIDS, 2024, 9 (05)
[34]   Thermal flux in unsteady Rayleigh-Benard magnetoconvection [J].
Das, Sandip ;
Kumar, Krishna .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 142
[35]   Statistics of thermal plumes and dissipation rates in turbulent Rayleigh-Benard convection in a cubic cell [J].
Vishnu, Venugopal T. ;
De, Arnab Kumar ;
Mishra, Pankaj Kumar .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 182
[36]   Effects of radius ratio on annular centrifugal Rayleigh-Benard convection [J].
Wang, Dongpu ;
Jiang, Hechuan ;
Liu, Shuang ;
Zhu, Xiaojue ;
Sun, Chao .
JOURNAL OF FLUID MECHANICS, 2021, 930
[37]   ANELASTIC VERSUS FULLY COMPRESSIBLE TURBULENT RAYLEIGH-BENARD CONVECTION [J].
Verhoeven, Jan ;
Wiesehoefer, Thomas ;
Stellmach, Stephan .
ASTROPHYSICAL JOURNAL, 2015, 805 (01)
[38]   Turbulence statistics and energy budget in rotating Rayleigh-Benard convection [J].
Kunnen, R. P. J. ;
Geurts, B. J. ;
Clercx, H. J. H. .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2009, 28 (04) :578-589
[39]   The persistence of large-scale circulation in Rayleigh-Benard convection [J].
Wei, Ping .
JOURNAL OF FLUID MECHANICS, 2021, 924
[40]   Turbulent Rotating Rayleigh-Benard Convection: Spatiotemporal and Statistical Study [J].
Husain, A. ;
Baig, M. F. ;
Varshney, H. .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2009, 131 (02) :1-10