Marginally stable thermal equilibria of Rayleigh-Benard convection

被引:7
|
作者
O'Connor, Liam [1 ]
Lecoanet, Daniel [1 ,2 ]
Anders, Evan H. [2 ]
机构
[1] Northwestern Univ, Dept Engn Sci & Appl Math, Evanston, IL 60208 USA
[2] Northwestern Univ, Ctr Interdisciplinary Explorat & Res Astrophys, Evanston, IL 60201 USA
关键词
TURBULENCE; LAYER;
D O I
10.1103/PhysRevFluids.6.093501
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Natural convection exhibits turbulent flows which are difficult or impossible to resolve in direct numerical simulations. In this work we investigate a quasilinear form of the Rayleigh-Benard problem which describes the bulk one-dimensional properties of convection without resolving the turbulent dynamics. We represent perturbations away from the mean using a sum of marginally stable eigenmodes. By constraining the perturbation amplitudes, the marginal stability criterion allows us to evolve the background temperature profile under the influence of multiple eigenmodes representing flows at different length scales. We find the quasilinear system evolves to an equilibrium state where advective and diffusive fluxes sum to a constant. These marginally stable thermal equilibria (MSTE) are exact solutions of the quasilinear equations. The mean MSTE temperature profiles have thinner boundary layers and larger Nusselt numbers than thermally equilibrated two- and three-dimensional simulations of the full nonlinear equations. MSTE solutions exhibit a classic boundary-layer scaling of the Nusselt number Nu with the Rayleigh number Ra of Nu similar to Ra-1/3. When MSTE are used as initial conditions for a two-dimensional simulation, we find that Nu quickly equilibrates without the burst of turbulence often induced by purely conductive initial conditions, but we also find that the kinetic energy is too large and viscously attenuates on a long, viscous timescale.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Thermal modulation of Rayleigh-Benard convection
    Bhadauria, BS
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2002, 57 (9-10): : 780 - 786
  • [2] RAYLEIGH-BENARD CONVECTION
    BERGE, P
    DUBOIS, M
    CONTEMPORARY PHYSICS, 1984, 25 (06) : 535 - 582
  • [3] Thermal radiation in Rayleigh-Benard convection experiments
    Urban, P.
    Kralik, T.
    Hanzelka, P.
    Musilova, V
    Veznik, T.
    Schmoranzer, D.
    Skrbek, L.
    PHYSICAL REVIEW E, 2020, 101 (04)
  • [4] Rayleigh-Benard convection with thermal boundary inhomogeneities
    Bassani, Francesca
    Poggi, Davide
    Ridolfi, Luca
    von Hardenberg, Jost
    PHYSICAL REVIEW E, 2022, 105 (02)
  • [5] Turbulent thermal superstructures in Rayleigh-Benard convection
    Stevens, Richard J. A. M.
    Blass, Alexander
    Zhu, Xiaojue
    Verzicco, Roberto
    Lohse, Detlef
    PHYSICAL REVIEW FLUIDS, 2018, 3 (04):
  • [6] Scaling in Rayleigh-Benard convection
    Lindborg, Erik
    JOURNAL OF FLUID MECHANICS, 2023, 956
  • [7] DYNAMICS OF THE RAYLEIGH-BENARD CONVECTION
    PLATTEN, JK
    LEGROS, JC
    JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 1980, 5 (04) : 243 - 254
  • [8] Thermal boundary layers in turbulent Rayleigh-Benard convection
    du Puits, R.
    Resagk, C.
    Thess, A.
    ADVANCES IN TURBULENCE XII - PROCEEDINGS OF THE 12TH EUROMECH EUROPEAN TURBULENCE CONFERENCE, 2009, 132 : 589 - 592
  • [9] Multiphase Rayleigh-Benard convection
    Oresta, Paolo
    Fornarelli, Francesco
    Prosperetti, Andrea
    MECHANICAL ENGINEERING REVIEWS, 2014, 1 (01):
  • [10] Homogeneous rayleigh-benard convection
    Calzavarini, E.
    Lohse, D.
    Toschi, F.
    PROGRESS IN TURBULENCE II, 2007, 109 : 181 - +