Polynomial primal-dual affine scaling algorithms in semidefinite programming
被引:4
作者:
De Klerk, E
论文数: 0引用数: 0
h-index: 0
机构:
Delft Univ Technol, Fac Tech Math & Informat, NL-2600 GA Delft, NetherlandsDelft Univ Technol, Fac Tech Math & Informat, NL-2600 GA Delft, Netherlands
De Klerk, E
[1
]
Roos, C
论文数: 0引用数: 0
h-index: 0
机构:
Delft Univ Technol, Fac Tech Math & Informat, NL-2600 GA Delft, NetherlandsDelft Univ Technol, Fac Tech Math & Informat, NL-2600 GA Delft, Netherlands
Roos, C
[1
]
Terlaky, T
论文数: 0引用数: 0
h-index: 0
机构:
Delft Univ Technol, Fac Tech Math & Informat, NL-2600 GA Delft, NetherlandsDelft Univ Technol, Fac Tech Math & Informat, NL-2600 GA Delft, Netherlands
Terlaky, T
[1
]
机构:
[1] Delft Univ Technol, Fac Tech Math & Informat, NL-2600 GA Delft, Netherlands
interior-point method;
primal-dual method;
semidefinite programming;
affine scaling;
Dikin steps;
D O I:
10.1023/A:1009791827917
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
Two primal-dual affine scaling algorithms for linear programming are extended to semidefinite programming. The algorithms do not require (nearly) centered starting solutions, and can be initiated with any primal-dual feasible solution. The first algorithm is the Dikin-type affine Scaling method of Jansen et al. (1993b) and the second the classical affine scaling method of Monteiro et al. (1990). The extension of the former has a worst-case complexity bound of 0(tau(0)nL) iterations, where tau(0) is a measure of centrality of the the starting solution, and the latter a bound of 0(tau(0)nL(2)) iterations.