Hardy's theorem for zeta-functions of quadratic forms

被引:2
作者
Ramachandra, K [1 ]
Sankaranarayanan, A [1 ]
机构
[1] TATA INST FUNDAMENTAL RES,SCH MATH,MUMBAI 400005,MAHARASHTRA,INDIA
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 1996年 / 106卷 / 03期
关键词
quadratic forms; zeta-function; zeros near the line sigma equal to half;
D O I
10.1007/BF02867431
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Q(u(1), ..., u(t))=Sigma d(ij)u(i)u(j) (i, j=1 to l) be a positive definite quadratic form in l(greater than or equal to 3) variables with integer coefficients d(ij)(=d(jl)). Put s=sigma+it and for sigma>(l/2) write Z(Q)(s)=Sigma'(Q(u(1), ..., u(l)))(-s), where the accent indicates that the sum is over all l-tuples of integers (u(1), ..., u(l)) with the exception of (0, ..., 0). It is well-known that this series converges for sigma>(l/2) and that (s-(l/2))Z(Q)(s) can be continued to an entire function of s. Let delta be any constant with 0<delta<1/100. Then it is proved that Z(Q)(s) has >>delta TlogT zeros in the rectangle (\sigma-1/2\less than or equal to delta, T less than or equal to t less than or equal to 2T).
引用
收藏
页码:217 / 226
页数:10
相关论文
共 14 条
[1]  
BALASUBRAMANIAN R, 1978, J INDIAN MATH SOC, V42, P135
[2]  
BALASUBRAMANIAN R, 1977, J INDIAN MATH SOC, V41, P301
[4]  
LANDAU E, 1912, GOTT NACHR, P687
[5]   HILBERTS INEQUALITY [J].
MONTGOMERY, HL ;
VAUGHAN, RC .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1974, 8 (MAY) :73-82
[6]   THE MEAN-SQUARE OF DIRICHLET SERIES ASSOCIATED WITH AUTOMORPHIC-FORMS [J].
MULLER, W .
MONATSHEFTE FUR MATHEMATIK, 1992, 113 (02) :121-159
[7]   SOME REMARKS ON A THEOREM OF MONTGOMERY AND VAUGHAN [J].
RAMACHANDRA, K .
JOURNAL OF NUMBER THEORY, 1979, 11 (03) :465-471
[8]  
RAMACHANDRA K, 1975, J LOND MATH SOC, V10, P482
[9]  
RAMACHANDRA K, 1978, J REINE ANGEW MATH, V303, P295
[10]  
Ramachandra K., 1974, ANN SCUOLA NORM SU S, V1, P81