A New Bayesian Approach to Multiple Intermittent Fault Diagnosis
被引:0
|
作者:
Abreu, Rui
论文数: 0引用数: 0
h-index: 0
机构:
Delft Univ Technol, NL-2628 CD Delft, NetherlandsDelft Univ Technol, NL-2628 CD Delft, Netherlands
Abreu, Rui
[1
]
Zoeteweij, Peter
论文数: 0引用数: 0
h-index: 0
机构:
Delft Univ Technol, NL-2628 CD Delft, NetherlandsDelft Univ Technol, NL-2628 CD Delft, Netherlands
Zoeteweij, Peter
[1
]
van Gemund, Arjan J. C.
论文数: 0引用数: 0
h-index: 0
机构:
Delft Univ Technol, NL-2628 CD Delft, NetherlandsDelft Univ Technol, NL-2628 CD Delft, Netherlands
van Gemund, Arjan J. C.
[1
]
机构:
[1] Delft Univ Technol, NL-2628 CD Delft, Netherlands
来源:
21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS
|
2009年
关键词:
SYSTEMS;
D O I:
暂无
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Logic reasoning approaches to fault diagnosis account for the fact that a component c(j) may fail intermittently by introducing a parameter g(j) that expresses the probability the component exhibits correct behavior. This component parameter g(j), in conjunction with a priori fault probability, is used in a Bayesian framework to compute the posterior fault candidate probabilities. Usually, information on g(j) is not known a priori. While proper estimation of g(j) can have a great impact on the diagnostic accuracy, at present, only approximations have been proposed. We present a novel framework, BARINEL, that computes exact estimations of g(j) as integral part of the posterior candidate probability computation. BARINEL's diagnostic performance is evaluated for both synthetic and real software systems. Our results show that our approach is superior to approaches based on classical persistent fault models as well as previously proposed intermittent fault models.
机构:
Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Res Inst Diagnost & Cybernet, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Res Inst Diagnost & Cybernet, Xian 710049, Peoples R China
Tang, Hao
Liao, Y. H.
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Res Inst Diagnost & Cybernet, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Res Inst Diagnost & Cybernet, Xian 710049, Peoples R China
Liao, Y. H.
Cao, J. Y.
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Res Inst Diagnost & Cybernet, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Res Inst Diagnost & Cybernet, Xian 710049, Peoples R China
Cao, J. Y.
Xie, Hang
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Res Inst Diagnost & Cybernet, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Res Inst Diagnost & Cybernet, Xian 710049, Peoples R China