A Splitting Result for Real Submanifolds of a Kahler Manifold

被引:1
作者
Biliotti, Leonardo [1 ]
机构
[1] Univ Parma, Leonardo Biliotti Dipartimento Sci Matemat Fis &, Parma, Italy
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2022年 / 53卷 / 03期
关键词
Gradient map; Real reductive Lie groups; Carton decomposition; MOMENT MAP;
D O I
10.1007/s00574-021-00280-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (Z, omega) be a connected Kahler manifold with an holomorphic action of the complex reductive Lie group U-C, where U is a compact connected Lie group acting in a hamiltonian fashion. Let G be a closed compatible Lie group of U-C and let M be a G-invariant connected submanifold of Z. Let x is an element of M. If G is a real form of U-C, we investigate conditions such that G . x compact implies U-C . x is compact as well. The vice-versa is also investigated. We also characterize G-invariant real submanifolds such that the norm-square of the gradient map is constant. As an application, we prove a splitting result for real connected submanifolds of (Z, omega) generalizing a result proved in Gori and Podesta (Ann Global Anal Geom 26: 315-318, 2004), see also Bedulli and Gori (Results Math 47: 194-198, 2005), Biliotti (Bull Belg Math Soc Simon Stevin 16: 107-116 2009).
引用
收藏
页码:741 / 750
页数:10
相关论文
共 19 条
[1]   The Kempf-Ness Theorem and invariant theory for real reductive representations [J].
Biliotti, Leonardo .
SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2021, 15 (01) :54-74
[2]   On the moment map on symplectic manifolds [J].
Biliotti, Leonardo .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2009, 16 (01) :107-116
[3]   ORBITS OF LINEAR ALGEBRAIC GROUPS [J].
BIRKES, D .
ANNALS OF MATHEMATICS, 1971, 93 (03) :459-&
[4]   ARITHMETIC SUBGROUPS OF ALGEBRAIC GROUPS [J].
BOREL, A ;
HARISHCHANDRA .
ANNALS OF MATHEMATICS, 1962, 75 (03) :485-&
[6]   A note on the moment map on compact Kahler manifolds [J].
Gori, A ;
Podestà, F .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2004, 26 (03) :315-318
[7]  
Gori A., 2005, RESULTS MATH, V47, P194, DOI [10.1007/BF03323025, DOI 10.1007/BF03323025]
[8]  
Guillemin V., 1990, Symplectic Techniques in Physics
[9]  
Guivarch Y., 1998, COMPACTIFICATIONS SY
[10]  
Heinzner P., 2006, Global Aspects of Complex Geometry, P211