Equations and rational points of the modular curves X0+ (p)

被引:0
作者
Mercuri, Pietro [1 ]
机构
[1] Sapienza Univ, I-00161 Rome, Italy
关键词
Modular curve; Modular parametrization;
D O I
10.1007/s11139-017-9925-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be an odd prime number and let X-0(+) (p) be the quotient of the classical modular curve X-0 (p) by the action of the Atkin-Lehner operator omega(p). In this paper, we show how to compute explicit equations for the canonical model of X-0(+) (p). Then we show how to compute the modular parametrization, when it exists, from X-0(+) (p) to an isogeny factor E of dimension 1 of its Jacobian J(0)(+) (p). Finally, we show how to use this map to determine the rational points on X-0(+) (p) up to a large fixed height.
引用
收藏
页码:291 / 308
页数:18
相关论文
共 22 条
[1]  
[Anonymous], P S PURE MATH
[2]   HECKE OPERATORS ON GAMMAO(M) [J].
ATKIN, AOL ;
LEHNER, J .
MATHEMATISCHE ANNALEN, 1970, 185 (02) :134-&
[3]   Finiteness results for modular curves of genus at least 2 [J].
Baker, MH ;
González-Jiménez, E ;
González, J ;
Poonen, B .
AMERICAN JOURNAL OF MATHEMATICS, 2005, 127 (06) :1325-1387
[4]  
Bilu Y, 2011, ARXIV11044641
[5]  
Cremona J. E., 1997, ALGORITHMS MODULAR E
[6]  
Diamond F., 2005, Graduate Texts in Mathematics, Vvol 228
[7]  
Galbraith S.D., 1996, THESIS
[8]   Rational points on X0+(p) [J].
Galbraith, SD .
EXPERIMENTAL MATHEMATICS, 1999, 8 (04) :311-318
[9]  
Griffiths P., 1978, PRINCIPLES ALGEBRAIC
[10]  
Hasegawa Y, 1996, ACTA ARITH, V77, P179