A directional ghost-cell immersed boundary method for incompressible flows

被引:38
作者
Chi, Cheng [1 ,2 ]
Abdelsamie, Abouelmagd [1 ,3 ]
Thevenin, Dominique [1 ]
机构
[1] Univ Magdeburg Otto von Guericke, Lab Fluid Dynam & Tech Flows, Magdeburg, Germany
[2] Int Max Planck Res Sch IMPRS Adv Methods Proc & S, Magdeburg, Germany
[3] Helwan Univ, Fac Engn, Lab Fluid Mech, Cairo, Egypt
关键词
Incompressible flow; Complex geometry; Immersed boundary; Ghost-cell method; CARTESIAN GRID METHOD; COMPRESSIBLE FLOW; CIRCULAR-CYLINDER; REYNOLDS-NUMBER; FLUID; WAKE; SIMULATIONS; SPHERE; MECHANISM; DYNAMICS;
D O I
10.1016/j.jcp.2019.109122
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper describes an efficient ghost-cell immersed boundary method for incompressible flow simulations. The method employs a locally directional extrapolation scheme along all discretization directions for the ghost values. Additionally, it involves fictitious discrete boundary forcing terms instead of the ghost values in the governing equations. In this way, the boundary is represented more accurately than in prior IBMs and it is possible to fulfill the divergence-free condition. When combined with high-order spatial discretization schemes, the IBM order is reduced locally near the immersed boundary in a step-wise manner. In this way, the method delivers more compact stencils and is able to deal with sharp interfaces. By handling the distance from the ghost point to the boundary carefully, the proposed method delivers lower truncation errors than standard IBM, with clean (persistent) convergence rate and enhanced stability. The parallel implementation of this approach is straightforward. Its accuracy has been checked by considering a variety of test cases, including irregular, three-dimensional, and moving boundaries. The local accuracy for the proposed method is formally second order, and is measured to be close to this value using numerical tests. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 63 条
[1]   Towards direct numerical simulations of low-Mach number turbulent reacting and two-phase flows using immersed boundaries [J].
Abdelsamie, Abouelmagd ;
Fru, Gordon ;
Oster, Timo ;
Dietzsch, Felix ;
Janiga, Gabor ;
Thevenin, Dominique .
COMPUTERS & FLUIDS, 2016, 131 :123-141
[2]  
[Anonymous], 1992, Numerical Recipes in C: The Art of Scientific Computing
[3]   Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations [J].
Balaras, E .
COMPUTERS & FLUIDS, 2004, 33 (03) :375-404
[4]  
Baranyi L., 2003, J COMPUTATIONAL APPL, V4, P13
[5]   Three-dimensional Floquet stability analysis of the wake of a circular cylinder [J].
Barkley, D ;
Henderson, RD .
JOURNAL OF FLUID MECHANICS, 1996, 322 :215-241
[6]   The Computational Fluid Dynamics Rupture Challenge 2013-Phase II: Variability of Hemodynamic Simulations in Two Intracranial Aneurysms [J].
Berg, Philipp ;
Roloff, Christoph ;
Beuing, Oliver ;
Voss, Samuel ;
Sugiyama, Shin-Ichiro ;
Aristokleous, Nicolas ;
Anayiotos, Andreas S. ;
Ashton, Neil ;
Revell, Alistair ;
Bressloff, Neil W. ;
Brown, Alistair G. ;
Chung, Bong Jae ;
Cebral, Juan R. ;
Copelli, Gabriele ;
Fu, Wenyu ;
Qiao, Aike ;
Geers, Arjan J. ;
Hodis, Simona ;
Dragomir-Daescu, Dan ;
Nordahl, Emily ;
Suzen, Yildirim Bora ;
Khan, Muhammad Owais ;
Valen-Sendstad, Kristian ;
Kono, Kenichi ;
Menon, Prahlad G. ;
Albal, Priti G. ;
Mierka, Otto ;
Muenster, Raphael ;
Morales, Hernan G. ;
Bonnefous, Odile ;
Osman, Jan ;
Goubergrits, Leonid ;
Pallares, Jordi ;
Cito, Salvatore ;
Passalacqua, Alberto ;
Piskin, Senol ;
Pekkan, Kerem ;
Ramalho, Susana ;
Marques, Nelson ;
Sanchi, Stephane ;
Schumacher, Kristopher R. ;
Sturgeon, Jess ;
Svihlova, Helena ;
Hron, Jaroslav ;
Usera, Gabriel ;
Mendina, Mariana ;
Xiang, Jianping ;
Meng, Hui ;
Steinman, David A. ;
Janiga, Gabor .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2015, 137 (12)
[7]   A local directional ghost cell approach for incompressible viscous flow problems with irregular boundaries [J].
Berthelsen, Petter A. ;
Faltinsen, Odd M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (09) :4354-4397
[8]   Accurate projection methods for the incompressible Navier-Stokes equations [J].
Brown, DL ;
Cortez, R ;
Minion, ML .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 168 (02) :464-499
[9]   Moving immersed boundary method [J].
Cai, Shang-Gui ;
Ouahsine, Abdellatif ;
Favier, Julien ;
Hoarau, Yannick .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2017, 85 (05) :288-323
[10]   An improved ghost-cell immersed boundary method for compressible flow simulations [J].
Chi, Cheng ;
Lee, Bok Jik ;
Im, Hong G. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2017, 83 (02) :132-148