Dispersive shock waves in the solar wind

被引:10
作者
Ballai, I.
Forgacs-Dajka, E.
Marcu, A.
机构
[1] Univ Sheffield, Solar Phys & Space Plasma Res Ctr, Dept Appl Math, Sheffield S3 7RH, S Yorkshire, England
[2] Eotvos Lorand Univ, Dept Astron, H-1518 Budapest, Hungary
[3] Univ Babes Bolyai, Dept Theoret & Computat Phys, Cluj Napoca 400084, Romania
关键词
solar wind; magnetohydrodynamics (MHD); shock waves;
D O I
10.1002/asna.200710783
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Compressional waves in the solar wind propagating over large distances are likely to steepen into shock waves where the increase in the amplitude is balanced by dissipation. Dispersive effects caused by, e.g. Hall currents perpendicular to the ambient magnetic field can influence the generation and propagation of shock waves. In the present study the dispersion is considered weak but in time its importance can grow. When the effect of dispersion is strong enough, it can balance the nonlinear steepening of waves leading to the formation of solitons. The obtained results show that the weak dispersion will alter the amplitude and propagation speed of the shock wave. (c) 2007 WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim.
引用
收藏
页码:734 / 737
页数:4
相关论文
共 19 条
[1]   Solitary waves in a Hall solar wind plasma [J].
Ballai, I ;
Thelen, JC ;
Roberts, B .
ASTRONOMY & ASTROPHYSICS, 2003, 404 (02) :701-707
[2]  
BALLAI I, 2007, IN PRESS SOPH
[3]   Properties of longitudinal flux tube waves - III. Wave propagation in solar and stellar wind flows [J].
Cuntz, M ;
Suess, ST .
ASTRONOMY & ASTROPHYSICS, 2004, 424 (03) :1003-1010
[4]   Solar chromospheric spicules from the leakage of photospheric oscillations and flows [J].
De Pontieu, B ;
Erdélyi, R ;
James, SP .
NATURE, 2004, 430 (6999) :536-539
[5]   THE BENJAMIN-ONO-BURGERS EQUATION - AN APPLICATION IN SOLAR PHYSICS [J].
EDWIN, PM ;
ROBERTS, B .
WAVE MOTION, 1986, 8 (02) :151-158
[6]   Leaky electromagnetic wave resonances of a plasma sphere [J].
Ghanashev, I ;
Zhelyazkov, I ;
Stoykov, S .
PHYSICS OF PLASMAS, 1996, 3 (10) :3540-3544
[7]  
KODAMA Y, 1978, J PHYS SOC JPN, V45, P298, DOI 10.1143/JPSJ.45.298
[8]   SOLITON AMPLIFICATION [J].
LEIBOVICH, S ;
RANDALL, JD .
PHYSICS OF FLUIDS, 1979, 22 (12) :2289-2295
[9]   APPROXIMATE SOLUTION OF THE DAMPED BURGERS-EQUATION [J].
MALFLIET, W .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (16) :L723-L728
[10]   Magnetohydrodynamic modes in a periodic magnetic steady state medium [J].
Marcu, A ;
Ballai, I ;
Pintér, B .
ASTRONOMY & ASTROPHYSICS, 2006, 449 (03) :1193-1202