Utilizing the Built-in Electric Field of p-n Junctions to Spatially Propel the Stepwise Polysulfide Conversion in Lithium-Sulfur Batteries

被引:205
作者
Li, Hongtai [1 ]
Chen, Chi [2 ,3 ]
Yan, Yingying [1 ]
Yan, Tianran [1 ]
Cheng, Chen [1 ]
Sun, Dan [2 ,3 ]
Zhang, Liang [1 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Peoples R China
[2] Chinese Acad Sci, Fujian Inst Res Struct Matter, Fujian Key Lab Nanomat, CAS Key Lab Design & Assembly Funct Nanostruct, Fuzhou 350002, Peoples R China
[3] Chinese Acad Sci, Haixi Inst, Xiamen Inst Rare Earth Mat, Xiamen Key Lab Rare Earth Photoelect Funct Mat, Xiamen 361021, Peoples R China
基金
中国国家自然科学基金;
关键词
built-in electric field; heterostructures; Li-S batteries; polysulfide conversion; stepwise catalysis; HIGH-PERFORMANCE; HETEROJUNCTIONS; MECHANISM; KINETICS;
D O I
10.1002/adma.202105067
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Integrating sulfur cathodes with effective catalysts to accelerate polysulfide conversion is a suitable way for overcoming the serious shuttling and sluggish conversion of polysulfides in lithium-sulfur batteries. However, because of the sharp differences in the redox reaction kinetics and complicated phase transformation of sulfur, a single-component catalyst cannot consistently accelerate the entire redox process. Herein, hierarchical and defect-rich Co3O4/TiO2 p-n junctions (p-Co3O4/n-TiO2-HPs) are fabricated to implement the sequential catalysis of S-8(solid) -> Li2S4(liquid) -> Li2S(solid). Co3O4 sheets physiochemically immobilize the pristine sulfur and ensure the rapid reduction of S-8 to Li2S4, while TiO2 dots realize the effective precipitation of Li2S, bridged by the directional migration of polysulfides from p-type Co3O4 to n-type TiO2 attributed to the interfacial built-in electric field. As a result, the sulfur cathode coupled with p-Co3O4/n-TiO2-HPs delivers long-term cycling stability with a low capacity decay of 0.07% per cycle after 500 cycles at 10 C. This study demonstrates the synergistic effect of the built-in electric field and heterostructures in spatially enhancing the stepwise conversion of polysulfides, which provides novel insights into the interfacial architecture for rationally regulating the polysulfide redox reactions.
引用
收藏
页数:11
相关论文
共 42 条
[1]   Competing Effect of Co3+ Reducibility and Oxygen-Deficient Defects Toward High Oxygen Evolution Activity in Co3O4 Systems in Alkaline Medium [J].
Alex, Chandraraj ;
Sarma, Saurav Ch ;
Peter, Sebastian C. ;
John, Neena S. .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (06) :5439-5447
[2]   Sulfur Speciation in Li-S Batteries Determined by Operando X-ray Absorption Spectroscopy [J].
Cuisinier, Marine ;
Cabelguen, Pierre-Etienne ;
Evers, Scott ;
He, Guang ;
Kolbeck, Mason ;
Garsuch, Arnd ;
Bolin, Trudy ;
Balasubramanian, Mahalingam ;
Nazar, Linda F. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (19) :3227-3232
[3]   Synthesis and enhanced photoelectrocatalytic activity of p-n junction Co3O4/TiO2 nanotube arrays [J].
Dai, Gaopeng ;
Liu, Suqin ;
Liang, Ying ;
Luo, Tianxiong .
APPLIED SURFACE SCIENCE, 2013, 264 :157-161
[4]   Cobalt in Nitrogen-Doped Graphene as Single-Atom Catalyst for High-Sulfur Content Lithium-Sulfur Batteries [J].
Du, Zhenzhen ;
Chen, Xingjia ;
Hu, Wei ;
Chuang, Chenghao ;
Xie, Shuai ;
Hu, Ajuan ;
Yan, Wensheng ;
Kong, Xianghua ;
Wu, Xiaojun ;
Ji, Hengxing ;
Wan, Li-Jun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (09) :3977-3985
[5]   Mechanism and Kinetics of Li2S Precipitation in Lithium-Sulfur Batteries [J].
Fan, Frank Y. ;
Carter, W. Craig ;
Chiang, Yet-Ming .
ADVANCED MATERIALS, 2015, 27 (35) :5203-5209
[6]   Synergistic Regulation of Polysulfides Conversion and Deposition by MOF-Derived Hierarchically Ordered Carbonaceous Composite for High-Energy Lithium-Sulfur Batteries [J].
Fang, Daliang ;
Wang, Yanlei ;
Qian, Cheng ;
Liu, Xizheng ;
Wang, Xi ;
Chen, Shimou ;
Zhang, Suojiang .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (19)
[7]   Graphene role in improved solar photocatalytic performance of TiO2-RGO nanocomposite [J].
Garrafa-Galvez, Horacio Edgardo ;
Alvarado-Beltran, Clemente Guadalupe ;
Almaral-Sanchez, Jorge Luis ;
Hurtado-Macias, Abel ;
Garzon-Fontecha, Angelica Maria ;
Logue, Priscy Alfredo ;
Castro-Beltran, Andres .
CHEMICAL PHYSICS, 2019, 521 :35-43
[8]   Understanding the Charging Mechanism of Lithium-Sulfur Batteries Using Spatially Resolved Operando X-Ray Absorption Spectroscopy [J].
Gorlin, Yelena ;
Patel, Manu U. M. ;
Freiberg, Anna ;
He, Qi ;
Piana, Michele ;
Tromp, Moniek ;
Gasteiger, Hubert A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (06) :A930-A939
[9]   Realizing High Volumetric Lithium Storage by Compact and Mechanically Stable Anode Designs [J].
Han, Junwei ;
Li, Huan ;
Kong, Debin ;
Zhang, Chen ;
Tao, Ying ;
Li, Hong ;
Yang, Quan-Hong ;
Chen, Liquan .
ACS ENERGY LETTERS, 2020, 5 (06) :1986-1995
[10]   Active Electron Density Modulation of Co3O4-Based Catalysts Enhances their Oxygen Evolution Performance [J].
He, Dong ;
Song, Xianyin ;
Li, Wenqing ;
Tang, Chongyang ;
Liu, Jiangchao ;
Ke, Zunjian ;
Jiang, Changzhong ;
Xiao, Xiangheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (17) :6929-6935