Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles

被引:57
作者
Yan, Zhihui [1 ,2 ]
Wu, Liang [1 ]
Jia, Xiaojun [1 ,2 ]
Liu, Yanhong [1 ]
Deng, Ruijie [1 ]
Li, Shujing [1 ,2 ]
Wang, Hai [1 ,2 ]
Xie, Changde [1 ,2 ]
Peng, Kunchi [1 ,2 ]
机构
[1] Shanxi Univ, Inst Optoelect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Shanxi, Peoples R China
[2] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
来源
NATURE COMMUNICATIONS | 2017年 / 8卷
关键词
ELECTROMAGNETICALLY INDUCED TRANSPARENCY; SINGLE-PHOTON; MEMORIES; STATE; SPIN; PHONONS; OPTICS; TIME;
D O I
10.1038/s41467-017-00809-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is crucial for the physical realization of quantum information networks to first establish entanglement among multiple space-separated quantum memories and then, at a user-controlled moment, to transfer the stored entanglement to quantum channels for distribution and conveyance of information. Here we present an experimental demonstration on generation, storage, and transfer of deterministic quantum entanglement among three spatially separated atomic ensembles. The off-line prepared multipartite entanglement of optical modes is mapped into three distant atomic ensembles to establish entanglement of atomic spin waves via electromagnetically induced transparency light-matter interaction. Then the stored atomic entanglement is transferred into a tripartite quadrature entangled state of light, which is space-separated and can be dynamically allocated to three quantum channels for conveying quantum information. The existence of entanglement among three released optical modes verifies that the system has the capacity to preserve multipartite entanglement. The presented protocol can be directly extended to larger quantum networks with more nodes.
引用
收藏
页数:8
相关论文
共 58 条
[1]  
[Anonymous], 2004, A Guide to Experiments in Quantum Optics
[2]   Quantum memory for squeezed light [J].
Appel, Juergen ;
Figueroa, Eden ;
Korystov, Dmitry ;
Lobino, M. ;
Lvovsky, A. I. .
PHYSICAL REVIEW LETTERS, 2008, 100 (09)
[3]   Scalable quantum computing with atomic ensembles [J].
Barrett, Sean D. ;
Rohde, Peter P. ;
Stace, Thomas M. .
NEW JOURNAL OF PHYSICS, 2010, 12
[4]   Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay [J].
Chen, Yi-Hsin ;
Lee, Meng-Jung ;
Wang, I-Chung ;
Du, Shengwang ;
Chen, Yong-Fan ;
Chen, Ying-Cheng ;
Yu, Ite A. .
PHYSICAL REVIEW LETTERS, 2013, 110 (08)
[5]   Mapping photonic entanglement into and out of a quantum memory [J].
Choi, K. S. ;
Deng, H. ;
Laurat, J. ;
Kimble, H. J. .
NATURE, 2008, 452 (7183) :67-U4
[6]   Entanglement of spin waves among four quantum memories [J].
Choi, K. S. ;
Goban, A. ;
Papp, S. B. ;
van Enk, S. J. ;
Kimble, H. J. .
NATURE, 2010, 468 (7322) :412-U235
[7]   Measurement-induced entanglement for excitation stored in remote atomic ensembles [J].
Chou, CW ;
de Riedmatten, H ;
Felinto, D ;
Polyakov, SV ;
van Enk, SJ ;
Kimble, HJ .
NATURE, 2005, 438 (7069) :828-832
[8]   Quantum storage of photonic entanglement in a crystal [J].
Clausen, Christoph ;
Usmani, Imam ;
Bussieres, Felix ;
Sangouard, Nicolas ;
Afzelius, Mikael ;
de Riedmatten, Hugues ;
Gisin, Nicolas .
NATURE, 2011, 469 (7331) :508-U79
[9]   Reversible quantum interface for tunable single-sideband modulation [J].
Cviklinski, J. ;
Ortalo, J. ;
Laurat, J. ;
Bramati, A. ;
Pinard, M. ;
Giacobino, E. .
PHYSICAL REVIEW LETTERS, 2008, 101 (13)
[10]   A sensitive electrometer based on a Rydberg atom in a Schrodinger-cat state [J].
Facon, Adrien ;
Dietsche, Eva-Katharina ;
Grosso, Dorian ;
Haroche, Serge ;
Raimond, Jean-Michel ;
Brune, Michel ;
Gleyzes, Sebastien .
NATURE, 2016, 535 (7611) :262-+