Microlocal filtering with multiwavelets

被引:6
|
作者
Ashino, R [1 ]
Heil, C
Nagase, M
Vaillancourt, R
机构
[1] Osaka Kyoiku Univ, Div Math Sci, Osaka 582, Japan
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[3] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 560, Japan
[4] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
microlocal analysis; filter; multiwavelet; analytic representation;
D O I
10.1016/S0898-1221(01)85011-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Hyperfunctions in R-n are intuitively considered as sums of boundary values of holomorphic functions defined in infinitesimal wedges' in C-n. Orthonormal multiwavelets, which are a generalization of orthonormal single wavelets, generate a multiresolution analysis by means of several scaling functions. Microlocal analysis is briefly reviewed and a multiwavelet system adapted to microlocal filtering is proposed. A rough estimate of the microlocal content of functions or signals is obtained from their multiwavelet expansions. A fast algorithm for multiwavelet microlocal filtering is presented and several numerical examples are considered. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:111 / 133
页数:23
相关论文
共 50 条
  • [21] Applications of Microlocal Analysis in Inverse Problems
    Salo, Mikko
    MATHEMATICS, 2020, 8 (07)
  • [22] Generalized Gevrey Ultradistributions and their Microlocal Analysis
    Benmeriem, Khaled
    Bouzar, Chikh
    PSEUDO-DIFFERENTIAL OPERATORS: ANALYSIS, APPLICATIONS AND COMPUTATIONS, 2011, 213 : 235 - 250
  • [23] A microlocal Riemann-Hilbert correspondence
    Neto, O
    COMPOSITIO MATHEMATICA, 2001, 127 (03) : 229 - 241
  • [24] MICROLOCAL ANALYSIS OF BOREHOLE SEISMIC DATA
    Felea, Raluca
    Gaburro, Romina
    Greenleaf, Allan
    Nolan, Clifford
    INVERSE PROBLEMS AND IMAGING, 2022,
  • [25] Numerical microlocal analysis of harmonic wavefields
    Benamou, JD
    Collino, F
    Runborg, O
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 199 (02) : 717 - 741
  • [26] Microlocal Analysis of a Compton Tomography Problem
    Webber, James W.
    Quinto, Eric Todd
    SIAM JOURNAL ON IMAGING SCIENCES, 2020, 13 (02): : 746 - 774
  • [27] Microlocal analysis of the scattering angle transform
    Stolk, CC
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (9-10) : 1879 - 1900
  • [28] New biorthogonal multiwavelets for image compression
    Tan, HH
    Shen, LX
    Tham, JY
    SIGNAL PROCESSING, 1999, 79 (01) : 45 - 65
  • [29] Morera theorems via microlocal analysis
    Globevnik, J
    Quinto, ET
    JOURNAL OF GEOMETRIC ANALYSIS, 1996, 6 (01) : 19 - 30
  • [30] Translation-invariant denoising using multiwavelets
    Bui, TD
    Chen, GY
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (12) : 3414 - 3420