Microlocal filtering with multiwavelets

被引:6
|
作者
Ashino, R [1 ]
Heil, C
Nagase, M
Vaillancourt, R
机构
[1] Osaka Kyoiku Univ, Div Math Sci, Osaka 582, Japan
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[3] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 560, Japan
[4] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
microlocal analysis; filter; multiwavelet; analytic representation;
D O I
10.1016/S0898-1221(01)85011-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Hyperfunctions in R-n are intuitively considered as sums of boundary values of holomorphic functions defined in infinitesimal wedges' in C-n. Orthonormal multiwavelets, which are a generalization of orthonormal single wavelets, generate a multiresolution analysis by means of several scaling functions. Microlocal analysis is briefly reviewed and a multiwavelet system adapted to microlocal filtering is proposed. A rough estimate of the microlocal content of functions or signals is obtained from their multiwavelet expansions. A fast algorithm for multiwavelet microlocal filtering is presented and several numerical examples are considered. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:111 / 133
页数:23
相关论文
共 50 条
  • [11] Microlocal properties of bisingular operators
    Borsero, Massimo
    Schulz, Rene
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2014, 5 (01) : 43 - 67
  • [12] Generalized Deconvolution Estimation by Multiwavelets
    Wu, Cong
    RESULTS IN MATHEMATICS, 2023, 78 (04)
  • [13] Decomposable pairs and construction of multiwavelets
    Poornima, P.
    Murugesan, K.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 665 : 382 - 403
  • [14] Balanced Multiwavelets With Interpolatory Property
    Li, Baobin
    Peng, Lizhong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (05) : 1450 - 1457
  • [15] Construction of Symmetric Orthonormal Multiwavelets
    Li, Hong-Yan
    Zhao, Ping
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, 2010, : 309 - 313
  • [16] Balanced multiwavelets theory and design
    Lebrun, J
    Vetterli, M
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (04) : 1119 - 1125
  • [17] Construction of orthogonal multiwavelets with short sequence
    Pan, J
    Jiao, LC
    Fang, YW
    SIGNAL PROCESSING, 2001, 81 (12) : 2609 - 2614
  • [18] Multiwavelets on local fields of positive characteristic
    Bhat, Mohammad Younus
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2020, 47 (02): : 276 - 284
  • [19] BALANCED INTERPOLATORY MULTIWAVELETS WITH MULTIPLICITY r
    Li, Baobin
    Luo, Tiejian
    Peng, Lizhong
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2012, 10 (04)
  • [20] Microlocal analysis for Gelfand–Shilov spaces
    Luigi Rodino
    Patrik Wahlberg
    Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 2379 - 2420