Microlocal filtering with multiwavelets

被引:6
|
作者
Ashino, R [1 ]
Heil, C
Nagase, M
Vaillancourt, R
机构
[1] Osaka Kyoiku Univ, Div Math Sci, Osaka 582, Japan
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[3] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 560, Japan
[4] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
microlocal analysis; filter; multiwavelet; analytic representation;
D O I
10.1016/S0898-1221(01)85011-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Hyperfunctions in R-n are intuitively considered as sums of boundary values of holomorphic functions defined in infinitesimal wedges' in C-n. Orthonormal multiwavelets, which are a generalization of orthonormal single wavelets, generate a multiresolution analysis by means of several scaling functions. Microlocal analysis is briefly reviewed and a multiwavelet system adapted to microlocal filtering is proposed. A rough estimate of the microlocal content of functions or signals is obtained from their multiwavelet expansions. A fast algorithm for multiwavelet microlocal filtering is presented and several numerical examples are considered. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:111 / 133
页数:23
相关论文
共 50 条
  • [1] Microlocal analysis and multiwavelets
    Ashino, R
    Heil, C
    Nagase, M
    Vaillancourt, R
    GEOMETRY ANALYSIS AND APPLICATIONS, 2001, : 293 - 302
  • [2] Biorthogonal bases of multiwavelets
    Pleshcheva, E. A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2015, 21 (04): : 223 - 233
  • [3] Biorthogonal Bases of Multiwavelets
    Pleshcheva, E. A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2017, 296 (01) : S175 - S185
  • [4] Biorthogonal bases of multiwavelets
    E. A. Pleshcheva
    Proceedings of the Steklov Institute of Mathematics, 2017, 296 : 175 - 185
  • [5] Generalized Deconvolution Estimation by Multiwavelets
    Cong Wu
    Results in Mathematics, 2023, 78
  • [6] Time Localization of Alpert Multiwavelets
    Severov, P. G.
    RUSSIAN MATHEMATICS, 2012, 56 (05) : 61 - 63
  • [7] Balanced multiwavelets with short filters
    Lian, JA
    Chu, CK
    IEEE SIGNAL PROCESSING LETTERS, 2004, 11 (02) : 75 - 78
  • [8] Microlocal analysis in nonlinear thermoelasticity
    Wang, YG
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (04) : 683 - 705
  • [9] Microlocal properties of bisingular operators
    Massimo Borsero
    René Schulz
    Journal of Pseudo-Differential Operators and Applications, 2014, 5 : 43 - 67
  • [10] MICROLOCAL ANALYSIS OF A SPINDLE TRANSFORM
    Webber, James W.
    Holman, Sean
    INVERSE PROBLEMS AND IMAGING, 2019, 13 (02) : 231 - 261